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ABSTRACT

The conventional brick-layer model is not satisfactory either in theory or in practice for the description of dispersive responses

of polycrystalline solid electrolytes with current-constriction effects at the grain boundaries. Parallel networks of complex dielec-

tric functions have been shown to successfully describe the AC responses of polycrystalline sodium conductors over a wide tem-

perature and frequency range using only around ten model parameters of well-defined physical significance. The approach can be

generally applied to many solid electrolyte systems. The present work illustrates the approach by simulation. Problems of brick-

layer model analysis are demonstrated by fitting analysis of the simulated data under experimental conditions.
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1. Introduction

he AC characterization technique is an indispensable

tool for electroceramic materials, both conducting and

dielectric, and for the devices comprising them. Although

the technique is widely applied and is becoming more popu-

lar, the information derived therefrom is so far very limited

and often disputable. The technique is far from being prop-

erly utilized. Mono-frequency capacitance analyses of the

temperature- or bias-dependence of electroceramics and

semiconductor devices suffer seriously from intrinsic fre-

quency dispersions as well as from the overlapping of other

responses. Universally observed frequency dispersions have

been studied mostly using the AC conductivity or admittance

spectra. Circuit analyses have been widely practiced on the

other hand. Constant phase elements (CPEs) of impedance  Z
*= 1/[Q(jω)α], often represented as Q elements,  may be con-

sidered as ‘magic’ elements. Employed as ‘generalized’

capacitors or resistors, they appear to allow plausible

description of most real data. However, they are also the

cause of much trouble in AC characterization. CPEs cannot

unequivocally provide resistance or capacitance parame-

ters, which can be related to the physical quantities sought

for in AC characterization.

Although CPEs were originally introduced as ‘generalized’

resistors to describe the non-Debye responses of real dielec-

trics,1)  presently they serve as ‘generalized’ capacitors in

most AC characterization, in  which the resistance effects

are of primary interest for the evaluation of the conductivi-

ties and/or power dissipation in general. As noted previ-

ously,2) capacitance effects, which are less affected by local

inhomogeneity and short-circuiting, may provide more reli-

able physical insights than can be obtained from resistance

effects. In fact, as clearly shown in the beta alumina sys-

tem,3)  the strongly dispersive responses of solid electrolytes

indicate the rather well-defined capacitance and frequency

dispersion. Without any spectral evaluation, AC conductiv-

ity Arrhenius plots can directly reveal the current-constric-

tion character of blocking effects in the polycrystalline beta

alumina system. Parallel networks of the complex dielectric

functions with the parameters directly indicated in the raw

data can describe the AC responses over a wide tempera-

ture and frequency range. The parameters involved are only

around ten in number. The analysis has been successfully

applied to AgI4)  and scandium NASICON analog.5)

The description of the dispersive AC behavior of the poly-

crystalline solid electrolytes with current constriction

effects is now getting established.3-5) The present work

intends to generally illustrate the new methodology using

theoretical simulations. This work also demonstrates the

problems in conventional bricklayer analysis for the disper-

sive response of many solid electrolyte systems. Brick-layer

analysis has been applied to solid electrolytes with blocking

grain boundaries. Brick-layer modelling of polycrystalline

electroceramics formally integrates well with the space

charge mechanism for blocking effects. The grain boundary

resistance and capacitance can be parameterized in terms of

the charge depletion layers along the grain boundaries, as is

well-known for semiconductor systems. Although large car-

rier concentration in ionic conductors causes difficulty in the

quantitative estimation of the grain boundary parameters,

the space charge theory can explain the higher activation

energy necessary for transport across grain boundaries than

T
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is the case for the transport in the bulk. In the case of cur-

rent-constriction grain boundary effects showing similar

activation energy as for the bulk transport, grain boundary

parameters from brick-layer analysis cannot be clearly

explained even in theoretical simulations.6,7) It can be con-

cluded that conventional brick-layer analysis has problems

both in theory and in practice for the description of disper-

sive responses of polycrystalline solid electrolytes with cur-

rent-constriction effects.

2. Methods

Impedance simulations as a function of temperature and

frequency were performed with Matlab (Mathworks, USA).

Individual spectra were also simulated by Zview (Scribner

Ass. Inc., USA). Parametric analysis of the impedance spec-

tra by complex non-linear least squares fitting was also per-

formed with Zview. The numerical Kramers-Kronig test

was performed using the KK-test program provided by Prof.

B. Boukamp.8,9)

3. New Capacitance-centered Spectroscopy

The new approach essentially follows textbook dielectric

spectroscopy in which the polarization contributions such as

space charge at grain boundaries (εGB) (and electrodes) as

well as the relaxation mechanism in the bulk (εC) are addi-

tive to the static dielectric constant (εS), as schematically

illustrated in Fig. 1. Two polarization processes are

described by RC series circuits or Debye responses in solid

lines. Non-Debye responses observed in real dielectric sys-

tems are formulated as Cole-Cole, Cole-Davidson or, in gen-

eral, Havriliak-Negami functions1,10,11)

(1)

No circuit analogs are present except for the Debye case

with β=γ=1. The low-frequency-limiting frequency power-

law exponent or log-log slope is β, and the high-frequency

limiting slope is -βγ. The peak frequency of a Havriliak-

Negami response is12,13)

(2)

When γ ≠1, the peak frequency is shifted from τ−1 for

β = γ = 1 (Debye) and β < 1 (γ = 1) (Cole-Cole). The peak fre-

quency becomes higher when γ < 1 for the negatively

skewed dielectric spectra and lower when γ > 1 for the posi-

tively skewed spectra. It should be noted that under the

condition of β·γ ≤ 1, a well-behaved complex dielectric func-

tion with positive skewness is allowed for β > 1.14)

In Fig. 1, dashed-line Havriliak-Negami-type responses

are compared with solid-line Debye relaxations. A Cole-

Davidson type relaxation with β = 1 and γ ≈ 0.4 and dielec-

tric strength εC in the bulk solid electrolytes approximately

represents the apparent dielectric effects due to the mobile

charge carriers.3-5) This type of Cole-Davidson approxima-

tion was suggested for the exact Laplace-Fourier transform

of the stretched exponential temporal response, exp( )

with βK = 1/3.15-21) Together with the true dielectric capaci-

tance C0, it is named the CK1 model. Mobile charge carrier

origin is shown in the temperature dependence of the relax-

ation time constants τHN as τ−1T  exp(−E
σ
/kBT). 

The dielectric spectrum in Fig. 1 suggests that the three-

dimensional polarization effects in the polycrystalline

microstructure are similarly described as the polarization

process in the bulk. Unlike the CK1 type response, which is

due to the mobile charge carriers with well-defined fre-

quency dispersion as βK = 1/3 or γ ≈ 0.4, the dispersion char-

acter of the current constriction effects should vary from

sample to sample. These constants are, however, deter-

mined by the microstructure and thus independent of the

temperature as long as the conduction mechanism does not

change. An example with β = 0.6 and γ = 0.7 is shown sche-

matically in Fig. 1. For a beta alumina sample, a Cole-

Davidson type equation with β = 1 and γ = 0.23 was found.3)

On the other hand, for the scandium NASICON analog,5) an

oppositely (positively) skewed function was employed with

β = 0.59 and γ = 1.67 or βγ ≈ 1.

Such additive capacitance effects are connected in parallel

in the circuit analogy. The equivalent circuits thereof are

shown in Fig. 2(a, b). Two polarizations are represented by

the ideal RC Debye circuits (a) and by the Havriliak-

Negami function indicated by ‘H’ (b), respectively. Geomet-

ric capacitance from the dielectric constant εS is represented

by the ideal capacitor C0. Finite dielectric loss can be repre-

sented by a CPE with a value of α slightly less than 1.

The models include an ideal Warburg response or CPE

with α=0.5 in series connection to the sample resistance RT.

In the recent work on beta alumina3) and AgI,4)  the electrode

response of solid electrolytes with quasi-reversible elec-

trodes is shown to be a surprisingly ideal Warburg type

CHN
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Fig. 1. Variation of the dielectric constants with frequency
for a polycrystalline ceramic ionic conductor with
Debye polarizations in the bulk (ε

C
) and from the

grain boundaries (εGB). Dashed lines represent Havril-
iak-Negami-type relaxations.
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with the temperature dependence closely related to the bulk

conduction as E
σ
/2. The relation may be explained by the RC

transmission line expression of the Warburg impedance

which is , where the resistance represents the

bulk conduction process in solid electrolytes.

Parameters of a realistic solid electrolyte system are pre-

sented in Table 1. As all the parameters are either constant

or have a well-defined temperature dependence represented

by E
σ
, only 12 parameters are needed to simulate the tem-

perature as well as the frequency dependence, as shown in

Fig. 3. It should be noted that the exponent γ ≈ 0.4 for the

approximate CK1 behavior is a constant fixed by a physical

mechanism. With these parameters, AC behavior can be

simulated over a wide temperature (1 ≤ 1000/T ≤ 6) and the

frequency range (−2 ≤ Log(f/Hz) ≤ 6). The Bode plots in (a)-

(f) are drawn every 0.2 in 1000/T and AC conductivity

curves in (g, h, i) are for every 0.5 in Log(f/Hz).

In the hypothetical ideal Debye relaxations with the

capacitance magnitudes C1 and C2, represented in Fig.

3(a,d,g), R1 and R2 elements corresponding to τ1 and τ2 are

indicated. The AC behavior with ideal Debye-type relax-

ations is characterized by the admittance plateaus (d) and

the Arrhenius slopes (g) corresponding to the circuits

(R1R2RT) (in parallel), (R2RT), and RT, all with the activation

energy E
σ
. The temperature dependence of the Warburg

response is indicated by high-temperature low frequency

traces with E
σ
/2.

Characteristic bulk dispersion due to the mobile charge

carriers represented by H1 with β1 = 1 and γ≈0.4 is indicated

by the admittance Bode plots of the slope (1 − γ1) (Fig. 3(e)).

Admittance or conductivity Bode plots have been employed

to present universally observed frequency dispersions.22–24

Many ionic conductors, crystalline and non-crystalline,

show the relation (1 − γ1) ≈ 0.60 ~ 0.67.25-28) The correspond-

ing dispersion in the capacitance Bode plots of   is not

to be seen in the presence of the additional geometry capaci-

tance contribution. Dispersion due to the current constric-

tion, described by the H2 component, is indicated by the

exponent (1 − β2γ2). The respective dispersive responses are

indicated in AC conductivity curves by the slopes γ1Eσ 
and

β2γ2Eσ 
 (Fig. 3(h)). It should be noted that the Arrhenius

slopes in Fig. 3(g) for the networks of R1R2RT, R2RT, and

RT still serve as the boundary lines for different dispersion

behavior. Exact positioning of the Arrhenius slope is pos-

sible for RT, which is the only resistance parameter in cir-

cuit (b). 

Finite dielectric loss, characterized by the factor tanδ,

leads to the so-called ‘nearly constant loss (NCL)’ behavior

characterized by slope 1 in the admittance Bode plots

(Fig. 3(f))3,4,15,29-35) and in the flat AC conductivity curves pro-

portional to ω (Fig. 3(i)), because Y' = ωC ′ tanδ ≈ ωC0 tanδ.

It should be noted that the frequency independent loss

factor can be described by a CPE or Q with α ≈ 1 as

δ = (1 −α)(π/2). Superlinear behavior with slope 2, univer-

sally observed at frequencies as high as GHz and THz,36) can

be attributed to the small residual series resistance.3,4) A

ZW

*
R/jωC=

ω
γ
1
1–

Fig. 2. Equivalent circuits for the spectra in Figs. 3 and 4.
‘H’ represents a Havriliak-Negami dielectric response
with power law exponents β and γ. The parameters
for (a) and (b) are shown in Table 1. The fit results
for the circuit (c) are shown in Table 2.

Table 1. Parameters of the Equivalent Circuit of Fig. 2(a,b) for the AC Simulations in Fig. 3. E
σ
=0.5 eV; Shape Factor A/t=1 cm

Circuit parameter Value

C
0
/F (Q

0
/F1/(1−α) ⋅ s1−α)(α

0
=0.995)§ 1⋅10−12 ; ε

S
=11.3

C
1
/F 5⋅10−13 ; ε

C
=5.65

C
2
/F 5⋅10−12 ; ε

GB
=56.5

β1 1

γ1 0.4

β2 0.6

γ2 0.7

τ1 (=R1C1) ln(τ1

−1 T/s−1 ⋅ K) = 41.80− E
σ
/k

B
T

τ2 (=R2C2) ln(τ1

−2 T/s−1 ⋅ K) = 29.37 − E
σ
/k

B
T

RT = (t/A)/σT ln(σT T/Ω−1 cm−1 ⋅ K) = 3.016 − E
σ
/k

B
T

QW/F⋅s1/2  (αW=0.5)
‡

ln(QW T/F⋅s1/2  K) = −2.402 − E
σ
/2k

B
T

§

‡

C
0

* jωQ0( )
α
0

1–
=

QW

* QW jω( )
α
W

1–
=



March  2016 A Superior Description of AC behavior in Polycrystalline Solid Electrolytes with Current-Constriction Effects 153

stray resistance of a few kΩ in parallel to the inductance

from the setup leads to the superlinear behavior for the

experimental EIS frequency range below 10 MHz.4) The

present equivalent circuit approach can thus comprehen-

sively describe different types of the universal dispersive

responses. Simulations as shown in Fig. 3 with parameters

around 10 in number excellently match the experimental

data for beta alumina,3) AgI,4) and the scandium NASICON

analog.5) The new approach is applicable to many other solid

electrolyte systems; analysis for such systems will appear in

following publications. 

According to the CK1 model, the dielectric strength due to

mobile charge carriers has a slight temperature dependence

as5,19)

(3)

where N is the maximum mobile charge density and λ is the

fraction of the charge q that is mobile and d is the rms sin-

gle hop distance for the hopping entity. Decrease by the fac-

tor 2 would occur for the temperature increase from 500 K

to 1000 K. Experimentally, C2 as well as C1 slightly decreases

with temperature, supporting the idea of the common origin

of the mobile charge carriers. The T −1 dependence in C1 and

C2 is neglected in the present simulations.

4. Problems of Brick-layer Analysis

Figure 4 displays the complex plane presentation in imped-

εC 9 λN qd( )2/ 6kBε0( )[ ]T 1–
=AT

 1–
=

Fig. 3. Capacitance (a,b,c) and admittance Bode plots (d,e,f) and AC conductivity Arrhenius curves (g,h,i) using the fit parame-
ters of the equivalent circuit (Fig. 2) listed in Table 1. Left column graphs (a,d,g) are for the ideal Debye circuit with all
the frequency exponents 1; right column graphs (c,f,i) include the finite dielectric loss in Q0 as tanδ with δ = (1−α0)π/2.
The Bode plots (a-f) are for temperatures 1 to 6 in 1000/T at an interval of 0.2 from the top. The thick lines are for the
temperatures 1, 2, 3, 4, 5, and 6 in 1000/T. The Arrhenius plots (g,h,i) are for frequencies 6 to -2 in Log(f/Hz) at an inter-
val of 0.5.
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ance of the spectra at 1000/T=1 (a), 2 (b), 3 (c), 4 (d), and 5

(e). Their Bode plots are indicated in thicker lines in Fig. 3.

Debye responses (left), dispersive responses in Havriliak-

Negami equations with β1 = 1, γ1 = 0.4, β2 = 0.6, γ2 = 0.7

(middle), and with the dielectric loss factor tanδ, δ = (1 −
α0)(π/2) (α0 = 0.995) in addition (right) are shown. The num-

bers represent the logarithmic frequencies. The frequency

range, distinguished in the impedance plane presentation,

is shown to be quite limited because the impedance becomes

vanishingly small at high frequencies. The respective spec-

tra can be also simulated by Zview program using model

DE-28 for the Havriliak-Negami dielectric function.

Complex plane trajectories obtained from the parameters

in Table 1 should be of the same shape at all temperatures

when simulated for any arbitrarily wide frequency range.

Only the magnitude changes according to the activation

energy E
σ
. The solid-line spectra (a) to (e) indicate the spec-

tra at different temperatures; these spectra would be exper-

imentally limited in the frequency range, e.g. −2 to 6 in

Log(f/Hz). (The measurements can be also limited in terms

of the maximum impedance magnitude allowed for the spe-

cific impedance analyzers.) Results for measurements at

1000/T = 2 and 3, shown in Fig. 4(b) and (c), display more

or less completely the visible features in the impedance

plane, with the slope-one line response of the Warburg

impedance extending indefinitely at lowering frequencies.

At this point, it may be good to recall the basics of non-lin-

ear least squares fitting for impedance analysis. Parametric

analysis in impedance spectroscopy is performed using com-

plex nonlinear least squares fitting, which minimizes, e.g.

(4)

In non-linear curve fitting, the difference between the

measured and fitted values to be summed in the squares

should be normalized by the respective standard deviation.

S
Re Zexp Zmodel–( )

Zmodel

------------------------------------------
2 Im Zexp Zmodel–( )

Zmodel

------------------------------------------
2

+

ω
i

1=

ω
i

N=

∑≡

Fig. 4. Impedance spectra at 1000/T=1 (a), 2 (b), 3 (c), 4 (d), and 5 (e) for the Debye responses (left), for the dispersive responses
in the Havriliak-Negami equations with β

1
=1, γ

1
=0.4, β

2
=0.6, γ

2
=0.7 (middle), and with the additional dielectric loss factor

tanδ, δ = (1 − α
0
)(π/2) (α

0 
= 0.995) (right).
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Assuming similar relative errors in the nonlinear data, the

normalization uses the measured data values or the fitted

(theoretical) values. Compared to normal nonlinear least

squares fitting, complex variable fitting procedures have

further variations in the weighting methods.17,21) The nor-

malization can be done by the respective real and imaginary

values or, as in Eq. (4), by the magnitude of the complex

variables. It has been shown previously37) that impedance

data that cut the real axis at high frequency due to the

inductance can be better described by normalization using

impedance magnitude than using respective real and imagi-

nary values. Complex non-linear least squares fit results for

the data in Fig. 4, using the brick-layer model in Fig. 2(c),

which minimizes the sum of the squares according to Eq. 4

(which is the default weighting method in Zview program),

are presented in Table 2 and Fig. 5.

The spectrum at 1000/T=1 in Fig. 4(a) illustrates a typi-

cal high-temperature situation in which the high frequency

arc cannot be measured due to limitations in the experimen-

tal frequency range. For such measurements, the compo-

nent QB cannot be considered in the modeling. For the

spectra simulated by the Debye relaxations on the left, com-

pared to RB/RGB = 0.507 from the exact two arc analysis dis-

cussed in the next paragraph, smaller RB and larger RGB are

estimated in the ratio RB/RGB = 0.388, for the same RT

(= RB + RGB). QGB deviates from CGB = 1.43 × 10−11 F of the

exact two-arc analysis as 1.53·10−11 F·s1−α  with αGB= 0.987.

This is because the apparently single-arc trajectory has in

fact a non-negligible contribution from QB. When QB is

included in the model with αB fixed at 1, the overall fit

results become comparable to those in the exact two-arc

analysis discussed below. On the other hand, the fitted free

αB parameter deviates substantially from the ideal value of

1 as  0.785 in correlation with the prefactor 7.93·10−11 F·s1−α,

which is associated with an error of 2%, larger by an order

of magnitude than those of the other parameters. The

results of this maneuver caution against the arbitrary

employment of Q elements in equivalent circuit analysis. 

The dispersive responses generated by the H-N equations

in the middle and right of Fig. 4(a) are fitted by QGB with

αGB = 0.942 and 0.941, respectively, which can be compared

to 0.987 of the Debye case. The series resistance RB is fitted

as RB/RGB = 0.141 and 0.138, substantially smaller than the

value of 0.388 in the Debye case. An additional QB element

would be difficult to consider. Because lead wire inductance

or stray impedance, as indicated in Fig. 2(b), can strongly

affect the sample response associated with small resistance,

the analysis of high temperature spectra often becomes non-

trivial. A properly modeled stray impedance would provide

more and better information on the materials and systems

of interest.38) The parameters of the Warburg response are

found to be exactly the same as in the original circuit shown

in Fig. 2(a,b) for the simulation, Table 1 vs. Table 2. This is

because the Warburg response covers almost six decades

from 10−2 to 104 Hz, and thus becomes the major contribu-

tion in minimizing the sum of the squares in Eq. (4).

The full ‘experimental’ range from −2 to 6 in Log(f/Hz) of

the spectra shown in Fig. 4(b) is satisfactorily described by

the 5-component (8-parameter) brick-layer model shown in

Fig. 2(c). The left spectrum, simulated by Debye relaxations,

is fitted with QB and QGB close to that of the ideal capacitors,

i.e. with αB and αGB close to 1. It should be noted that the

R1C1 response occurs beyond  the upper limit of the experi-

mental frequency range and the capacitance at the high fre-

quency limit in the experimental spectra is close to C0+C1,

not C0. Without the Warburg element, the original model for

the present spectrum is a ‘Maxwell’ circuit in which C∞ = C0 +

C1, RDC=RT, and the R2C2 series circuit are connected in par-

Fig. 5. Complex non-linear least squares fit results for the data in Fig. 4, obtained using the brick-layer model in Fig. 2(c),
which minimize the sum of the squares according to Eq. (4). The numerical values are given in Table 2.
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allel. The circuit can be exactly interchangeable with a

‘Voigt’ model or with an (RBCB)(RGBCGB) brick-layer model

as17)

(5)

(6)

where

The thereby evaluated theoretical values of RB,GB and CB,GB

are indicated in Fig. 5(a) and (b); these values are consistent

with the fit results for the left spectrum shown in Fig. 4(b).

Small differences can be ascribed to the high frequency R1C1

response being not completely cut-off from the fit data range

and to the presence of the low frequency Warburg response,

which is not equivalently connected in the two circuits.

Similarly consistent fit results can be obtained for the

spectra in the left column of Fig. 4(c) and (d) at 1000/T = 3

and 4, but only when the data range is limited to 104 Hz and

102 Hz, respectively, to cut off the R1C1 response, which is

invisible in the impedance presentation. The cut-off data

are 25% and 50% of the measured data points. For the data

in Fig. 4(e) at 1000/T = 5, only one (RQ) is modeled for the

visible arc in the impedance plane for the frequency range

from 0.01 Hz to 1 Hz. Only 25% of the data are used for the

fitting analysis.  

For a simple model, as in the present case, when the ini-

tial values are chosen for the visible spectral feature, the fit

results may appear to describe the feature reasonably. How-

ever, poorly described ‘invisible’ high frequency data points

contribute to the sum of squares, which shows the poorness

of the fit. When the sum of squares is minimized for a better

description of the squashed high frequency response

included in the fit range, the fit results may not satisfacto-

rily describe even a simple arc response visible in the

impedance plane.

The inadequacy of the (RQ) model even for the segmental

region in the spectra of Fig. 4(e) is shown by the residual

errors in Fig. 6. The errors, defined as

(7)

are about 2% for the response generated by Debye relax-

ations but increase to become as large as 7% for the disper-

sive responses. The residual errors of the real and

imaginary values are shown to be correlated, which sug-

gests the inappropriateness of the modeling. Fig. 6 also

presents the residual errors given by the numerical Kram-

ers-Kronig test.8,9) The tests instruct the best possible fit

results for the ‘given’ data set and allow a decision to be

made as to whether the model can or should be further

improved or not. It should be noted however that the

numerical KK test program is based on the circuit analysis

algorithm using the R, C, L, and Q elements. The algorithm

does not work perfectly for the simulated response in the

present work, resulting in residual errors as large as 0.4%

at the low frequency limit. Similar observations have been

made for the simulated data with oscillatory response.39)

Residual errors for the same data change with the test fre-

quency range. Simulated data are almost perfectly fitted

when the frequency range is chosen appropriately.

One criticism of the impedance analysis is the physical

significance of the parameters of the equivalent circuit mod-

els when the ‘Maxwell’ and ‘Voigt’ circuits are shown to be

exactly equivalent by Eqs. (5) and (6). More significance

should be given to the original ‘Maxwell’ circuits in Fig. 2(a)

and (b), because the circuit parameters are directly indi-

cated in the raw data presented in Fig. 3. It is notable that

CB in the bricklayer ‘Voigt’ model is higher than the high

frequency limit capacitance C∞= C0 + C1. CB approaches C∞ =

C0 + C1 only when C2 >> C1. The dielectric constant conven-

tionally estimated from CB is thus subject to error in this

respect in addition to the problem that the true high fre-

quency limit capacitance for the dielectric constant is C0, not

C0 + C1. 

In the brick-layer model, CGB is related to the grain bound-

CB GB, 2C∞ 1
R2/RT C∞/C2 1+( )–

k
1/2

------------------------------------------------±⎝ ⎠
⎛ ⎞ 1–

=

RB GB,

RT

2
------- 1

C∞/C2 R2/RT 1+( )–

k
1/2

------------------------------------------------+−⎝ ⎠
⎛ ⎞=

k
C∞

C2

-------
R2

RT

------- 1+ +⎝ ⎠
⎛ ⎞

2

4
C∞R2

C2RT

--------------–=

ReΔ
ReZmodel ReZexp–

ReZmodel

---------------------------------------------; ImΔ
ImZmodel ImZexp–

ImZmodel

----------------------------------------------==

Fig. 6. Residual errors in the numerical Kramers-Kronig algorithm8,9 and in the brick-layer analysis presented in Fig. 4(e) for
Debye relaxations (a), H-N relaxations (b), and the additional dielectric loss for NCL (c).
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ary layer phase. Space charge theory can explain the pres-

ence of continuous grain boundary layers. CGB/CB is related

to the ratio of the Schottky depletion width to the grain size.

The ratio in the present case is 8.55. Space charge layers

thus constitute a considerable portion of the grains. This

may be considered to be the situation in nanocrystalline

solid electrolytes and geometry consideration may be made

in the derivation of specific properties from the circuit

parameters RB,GB and CB,GB.40) In contrast to such conven-

tional approach this work suggests a different description

and mechanism for the grain boundary effects. 

Impedance spectra in the middle and right columns of Fig.

4(b), (c), and (d) are results from the Havriliak-Negami

relaxations obtained using the same time constants as used

for the Debye relaxations in the left column. Such spectral

feature is indeed experimentally observed. The skewed arcs

in the impedance plane are often separated into two (RQ)

responses according to the brick-layer model of Fig. 2(c).

When the analysis is limited to the data in the visible range,

two (RQ) responses would describe the trajectory more or

less satisfactorily. As discussed for the data at 1000/T=1,

shown in Fig. 4(a), the two resistance components RB and

RGB are quite different from those in the Debye case. The

proportion of the RB component becomes even less with

decreasing temperature. Two conductivity curves from the

two components plotted are noted as ‘H-N’ in Fig. 5(a).

While the conductivity of RGB is similar to that of RT, which

has an activation energy of 0.502(± 0.001) eV, RB corre-

sponds to a distinctly higher conductivity, with a somewhat

smaller activation energy of 0.469(± 0.003) eV. The esti-

mated activation energy values for the respective cases are

presented in Table 3. The difference in activation energy in

this analysis may be regarded as support for the space

charge origin of the grain boundary impedance. However,

such temperature dependence is not involved in the original

simulated data. AC conductivity plots in Fig. 3(g,h,i) indi-

cate the trajectories with activation energy E
σ
, no matter

whether the response is dispersive or not.

Figure 5(b) indicates that the Q parameters vary arbi-

trarily, without clear trends. The α values are shown to vary

as 0.83, 0.86, and 0.91 for αB and as 0.90, 0.89, and 0.88 for

αGB. The prefactors are shown to decrease with tempera-

ture. The six parameters for the brick-layer models adjust

to each other to yield the least sum of squares. They are

closely correlated with each other and thus do not provide

trends of physical significance. The sum of squares or the χ2

values become larger by orders of magnitude compared to

the Debye case, as shown in Table 2.

While the ratio CGB/CB is 8.55 in the Debye case, the

capacitance effects, represented by the prefactors of Q, are

shown to be higher in QB than in QGB. The relaxation time

constants τ = (RQ)1/α are largely determined by the resis-

tance values with RGB >> RB. The effective capacitance ‘C ’

from the depressed semicircular response is conventionally

estimated as ‘C ’ = τR−1 = (RQ)1/αR−1.40-45) The estimates are

also presented in Fig. 5(b). For the response with Debye

relaxations with α close to one, ‘C ’ and Q almost coincide

with each other. The difference between the Q factors for

the dispersive responses is reduced but ‘CB’ is still higher

than ‘CGB’. The results cannot be explained by the brick

layer model. ‘CGB’ becomes larger than ‘CB’ when RGB is

much larger than RB and/or when C2/C1 is larger than in the

present example. Fundamental physical significance would

be difficult to be provided for these parameters.

In Fig. 5, for the results of the brick-layer analysis, only

the results of the data for the Debye and H-N relaxations

are presented. There are small differences due to the dielec-

tric loss factor with α0=0.995, as shown in Table 2, but these

differences are hardly distinguishable in the logarithmic

plots. The upper frequency range is cut off, so that the high

frequency limit capacitance becomes C∞ = C0 + C1. There-

fore, the effects of the dielectric loss associated with the C0

element are modest. As noted above, the high frequency

capacitance C∞ = C0 + C1 does not, however, represent a true

dielectric constant. As illustrated in the series of capaci-

tance Bode plots shown in Fig. 3(a,b,c), true geometric

capacitance C0 at high frequency limit can be directly mea-

sured at sufficiently low temperature  for solid electrolyte

systems, which are characterized by small RT or RB, large

C1, and small τ1 (or a high response frequency range). 

When the fitting range includes the squashed high fre-

quency region, which is very likely in the practice, the relax-

ation from C0  to C0+C1 should be appropriately modeled.

Parallel (RQC0) models as indicated in the equivalent cir-

cuit in Fig. 2(c) have been shown to describe experimental

spectra satisfactorily,46-50) although no definite characteriza-

tion or understanding of the dispersive behavior has been

made. The frequency dispersion due to the mobile charge

carriers, characterized by ‘H1,’ a Cole-Davidson response

with γ≈0.4, can be approximated by Q with α≈0.6 on the

high frequency side. High frequency dispersion of solid elec-

trolytes is thus more appropriately approximated by Q in

parallel to C0.
51) Dielectric loss can also be represented by a

slight non-ideality in C0. 

Conductivity (real admittance) spectra have generally

been preferred to indicate the frequency dispersion, because

almost ideal geometric capacitance does not contribute to

real admittance. In the description of the spectra both in

real and imaginary quantities, the presence of parallel

capacitance C0 is essential. Well-defined capacitance magni-

tudes and frequency dispersion can be described by the com-

plex dielectric functions in Eq. (1) and by the modeling in

Fig. 2(b). It should be mentioned that such behavior is not

limited to current-constriction type solid electrolytes but to

the systems that exhibit grain boundary effects with tem-

perature dependence clearly distinct from that of the bulk.

Proton conducting barium zirconates with huge grain

boundary effects can be included in this category. The space

charge analysis described above has so far been applied.43-45)

These systems exhibit rather involved grain boundary

effects, apparently with multiple relaxations. The present

method can be extended to tackle such nontrivial behavior
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and to find the correct physics behind it.

For the spectra in Fig. 4(a) and (b) at 1000/T = 1 and 2,

the parameters of the Warburg response are fitted close to

the original values in Fig. 2(a,b). This holds for the spec-

trum on the left in Fig. 4(c) at 1000/T = 3, generated by

Debye relaxations. The sample response described by the

almost ideal nondispersive capacitance elements does not

overlap significantly with the low frequency range response.

The Warburg response in the fitting range is sufficient to

yield close-to-original parameters. This is not true for the

dispersive responses generated by Havriliak-Negami relax-

ations, however. When the dispersive responses are approx-

imately described by Q elements with α significantly less

than 1, e.g. 0.9, the CPE response extends over a wide fre-

quency range. The observed Warburg response should thus

be described together with Q element(s) in the brick-layer

model. This results in a value of α
W

=0.57, significantly dif-

ferent from the original ideal value of 0.5, as can be seen in

Fig. 5(a) and in Table 2. The original Warburg parameters

were obtained for the dispersive spectra at higher tempera-

ture at 1000/T = 1 and 2 shown in Fig. 4(a) and (b) due to

the wide coverage of the Warburg response in the analysis

frequency range. The correlated deviation in the Q
W 

values

is indicated in the activation energy of Q
W, 

estimated to be

0.240(±0.005) eV, in comparison with the value of 0.250 eV

for the Debye case (Table 3). This again illustrates the cau-

tion against the unjustified employment of ‘magic’ Q ele-

ments. 

5. Conclusions

Brick-layer modeling with constant phase elements as

generalized capacitance elements for polycrystalline solid

electrolytes cannot satisfactorily describe the experimental

spectra over a wide range and the physical significance of

the parameters derived therefrom is rather weak. Strongly

dispersive responses in fact indicate well-defined capaci-

tance values and frequency dependence. Modeling based on

such observations allows a description of the AC response

over a wide temperature and frequency range with a very

limited number of parameters—around ten. A comprehen-

sive and definite electrical characterization of the solid elec-

trolyte materials and their devices can be finally made.
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