• Title/Summary/Keyword: Solid Substrate Fermentation

Search Result 64, Processing Time 0.024 seconds

Effect of food waste properties on methane production (음식물쓰레기의 특성이 메탄생성량에 미치는 영향분석)

  • Lee, Soo Gwan;Choi, Hong Lim;Lee, Joon Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.3
    • /
    • pp.11-22
    • /
    • 2014
  • The buffer capacity of food waste lowers during the collecting and transportation period. Food waste usually shows deficiency of micro nutrients especially molybdenum(Mo) and cobalt(Co). Therefore, food waste can be considered as a good mixture of livestock waste to enhance methane production. The objective of this study was to investigate the correlation between properties of substrates (local food waste and livestock manure) and methane yields for successive anaerobic fermentation process and its stable management. Food wastes were taken at an intermediate storage or treatment system provided by eight local authorities (Gangnam, Gangdong, Gwanak, Guro, Dongjak, Songpa, Yeongdeungpo, and Younsan) in Seoul. The solid content and potential methane yield of food wastes were average of 16% and $446.6STP-m{\ell}/g-VS$ (range from 334.8 to $567.5STP-m{\ell}/g-VS$) respectively. As for the beef cattle manure, the solid content and potential methane yield had an average of 26% and $280.6STP-m{\ell}/g-VS$ respectively. Potential methane yield had a positive correlation with fat content, and hydrogen content and a negative correlation with carbohydrate content ($r^2>0.8$). Therefore, the potential methane yield can be predicted based on the substrate characterization results with reasonable accuracy. Further research may be needed to investigate the relation of the properties of the mixture substrate and methane production rate. The mixtures may include food waste, livestock waste, and bulking agents (saw dust, rice hull, or agricultural byproducts etc.) to determine best combination of these substrates for maximum methane production rate.

Quality Characteristics of wheat Nuruk and Optimum Condition of Liquid Starters for Aspergillus sp. (Aspergillus 속 곰팡이를 이용한 액체종국 제조 및 밀누룩의 품질특성)

  • Choi, Jeong-Sil;Jung, Seok-Tae;Kim, Joo-Yeon;Choi, Ji-Ho;Choi, Han-Seok;Yeo, Soo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.4
    • /
    • pp.357-363
    • /
    • 2011
  • This study focus was primarily the development of liquid starters for Aspergillus oryzae and Aspergillus niger prepared with wheat bran as a low cost culture medium. For the preparation of the liquid media wheat bran was added at rates of 0, 5, 10, 15 and 20% and the Aspergillus sp. strains were then inoculated to these prepared broths. The results indicated that the more that wheat bran was contained in the medium, the more mycelia was produced for A. oryzae and A. niger. The highest enzyme activities were obtained with a 10~15% adding rate of wheat bran for both strains. Changes in the enzyme activities of the liquid starters during various incubation times (0, 24, 48, 72 and 96 hrs), indicated that the highest enzyme activities were seen between 48 and 72 hrs of culture. In addition, a comparative study was carried out on the production of enzymes using wheat as a substrate in nuruk, with liquid starter made from fermented agents according to the same concentrations used with the wheat bran. The pH, acidity, amino acidity, reducing sugar content and enzyme activity (${\alpha}$-amylase, glucoamylase, acidic protease) of wheat nuruk made with liquid starter were compared with those of wheat nuruk made with solid starter. The results suggest that the liquid starter is superior in both cases.

Studies on the Microbial Utilization of Agricultural Wastes (Part 13) Optimization of Simultaneous Hydrolysis-Fermentation for Ethanol Production from Rice Straw (농생폐자원의 미생물학적 이용에 관한 연구 (제13보) Ethanol 생산을 위한 동시당화-발효조건의 검사)

  • Lee, Jung-Yoon;Kim, Byung-Hong;Bae, Moo;Kim, Sung-Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.2
    • /
    • pp.71-75
    • /
    • 1981
  • Studies were made to optimize the simultaneous hydrolysis-fermentation (SSF) process for the production of ethanol from rice straw. Trichoderma sp. KI 7-2 was selected to produced cellulase by solid culture for SSF. Ethanol production was highest when the SSF process utilized koji culture of the fungus grown on a medium of wheat bran-rice straw 3 : 2 mixture with moisture content of 50% adjusted to pH 4.5 for 7 days as the enzyme source. It was found that pretreatment of the substrate is not necessary. To ferment 1g of rice straw by SSF 2.47 units of cellulase were required, and the initial yeast concentration of 2.5$\times$10$^{7}$ cell/$m\ell$ was found to be sufficient. Optimum pH and temperature for the process were 4.5 and 4$0^{\circ}C$, respectively. It was also found that higher ethanol concentration in the broth can be obtained by the addition of substrate or substrate and enzyme to SSF broth.

  • PDF

Comparison of Free Sugar Content in Grains Fermented with Mycelia of the Basidiomycetes (담자균이 배양된 곡물의 유리당 조성 변화)

  • 정인창;하효철;곽희진
    • Journal of Applied Tourism Food and Beverage Management and Research
    • /
    • v.13 no.1
    • /
    • pp.69-80
    • /
    • 2002
  • The grains were used as solid-substrate for the cultivation of basidiomycetes. The grains were fermented with Ganodema lucidum 7094, Fomitella fraxinea 81003, Phellinus igniarius 26005, and its free sugar composition was investigated. For the mass cultivation of mycelia, the hydrated grains with cold water were put into the plastic bottle. The mycelial growth rate in the bottled grains was high in the early stage with inoculation of homogenized mycelium. The activity of mycelium was maintained by adding sterilized water in the middle of cultivation. There was marked difference in the content of total free sugar and composition ratio of free sugar according to kinds of basidiomycetes. The content of free sugar increased far more in grains fermented with mycelium than in grains which was not fermented.

  • PDF

Effects of rice straw fermented with spent Pleurotus sajor-caju mushroom substrates on milking performance in Alpine dairy goats

  • Fan, Geng-Jen;Chen, Mei-Hsing;Lee, Churng-Faung;Yu, Bi;Lee, Tzu-Tai
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.999-1009
    • /
    • 2022
  • Objective: To improve the feeding value of rice straw (RS), this study evaluated the potential of rice straw fermented with Pleurotus sajor-caju (FRS) as dairy goat feed. Methods: Spent Pleurotus sajor-caju mushroom substrate was used as fungi inoculum to break the lignocellulose linkage of rice straw, which was solid-fermented at 25℃ to 30℃ for 8 weeks. The ruminal degradation of pangolagrass hay (PG), FRS, and RS were measured in situ for 96 hours in three dry Holstein cows, respectively. Effect of fungi fermented RS on milking performance was studied in feeding trials. A total of 21 Alpine goats a trial were divided into 3 groups: a control group in which PG accounted for 15% of the diet dry matter, and FRS or RS was used to replace the PG in the control group. Goats were fed twice a day under two 28-day trial in individual pens. Meanwhile, a 3×3 Latin square trial (14 days/period) was conducted to study the rumen digestion of three diets by using three fistulated dry goats. Rumen contents were collected for metabolite analyses every one to three hours on the last two days. Results: In situ study showed that fermentation could elevate the rumen degradable fraction and effective degradability of RS (p<0.05). Effective degradability of FRS dry matter was significantly increased from 29.5% of RS to 41.7%. Lactating trial results showed that dry matter intake and milk yield in the PG group and FRS group were similar and higher than those in RS group (p<0.05). The concentration of propionic acid and total volatile fatty acid in the RS group tended to be lower than those in PG group (p<0.10). There were no differences in rumen pH value and ammonia nitrogen level among the groups tested. Conclusion: Fermentation of rice straw by spent Pleurotus sajor-caju mushroom substrate could substantially enhance its feeding value to be equivalent to PG as an effective fiber source for dairy goat. The fermented rice straw is recommended to account for 15% in diet dry matter.

Liquefaction and Saccharification of Tapioca Starch for Fuel Ethanol Production (연료용 알콜 생산을 위한 타피오카 전분의 액화 및 당화)

  • 김기호;박성훈
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.304-316
    • /
    • 1995
  • For fuel alcohol production, enzymatic liquefaction and saccharification of tapioca starch by ${\alpha}$-amylase and glucoamylase were studied. The thermophilic ${\alpha}$-amylase Termamyl produced from Bacillus licheniformis gave a better liquefaction than the relalively low temperature enzyme BAN from B. subtilis. Oplimal temperature and pH with Termamyl were $90∼95^{\circ}C$ and 5.8, respectively. Minimal amount of Termamyl 240uc for a satisfactory liquefaction for a two-hour reaction was about 0.0125% (v/w) with respect to the mass of tapioca used. For saccharification experiments two enzymes, Novo AMG and Do-I1 enzymes were compared. The enzymatic activity of each enzyme was a little different depending on the substrate used and the latter was found to have a significant amount of ${\alpha}$-amylase activity. With Novo AMG optimal temperature was about $58^{\circ}C$ The pH optimum was 4.3 with maltose, however, with tapioca, no difference was observed between pH 4.3 and 5.7 which is a natural, unadjusted pH of liquefied tapioca. For 85% of completion of saccharification, it was necessary to use 0.0625% (v/w) of Novo AMG 400L for tapioca and to run the reaction for more than 10 hr, Packed volume of solid particles in tapioca slurry remained at around 30% during liquefaction and saccharification. This indicates that the removal of the solid particle before fermentation is not economically feasible at all, even though the solid particles make it very difficult to operate the bioreactor in a continuous mode with cell-recycle.

  • PDF

Rice Straw-Decomposing Fungi and Their Cellulolytic and Xylanolytic Enzymes

  • Lee, Sang-Joon;Jang, Yeong-Seon;Lee, Young-Min;Lee, Jae-Jung;Lee, Han-Byul;Kim, Gyu-Hyeok;Kim, Jae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.12
    • /
    • pp.1322-1329
    • /
    • 2011
  • Filamentous fungi colonizing rice straw were collected from 11 different sites in Korea and were identified based on characterization of their morphology and molecular properties. The fungi were divided into 25 species belonging to 16 genera, including 14 ascomycetes, one zygomycete, and one basidiomycete. Fungal cellulolytic and xylanolytic enzymes were assessed through a two-step process, wherein highly active cellulase- and/or hemicellulase-producing fungi were selected in a first screening step followed by a second step to isolate the best enzyme-producer. Twenty-five fungal species were first screened for the production of total cellulase (TC), endo-${\beta}$-1,4 glucanase (EG), and endo-${\beta}$-1,4 xylanase (XYL) using solid-state fermentation with rice straw as substrate. From this screening, six species, namely, Aspergillus niger KUC5183, A. ochraceus KUC5204, A. versicolor KUC5201, Mucor circinelloides KUC6014, Trichoderma harzianum 1 KUC5182, and an unknown basidiomycete species, KUC8721, were selected. These six species were then incubated in liquid Mandels' media containing cellulose, glucose, rice straw, or xylan as the sole carbon source and the activities of six different enzymes were measured. Enzyme production was highly influenced by media conditions and in some cases significantly increased. Through this screening process, Trichoderma harzianum 1 KUC5182 was selected as the best enzyme producer. Rice straw and xylan were good carbon sources for the screening of cellulolytic and xylanolytic enzymes.

Parametric Optimization of Feruloyl Esterase Production from Aspergillus terreus Strain GA2 Isolated from Tropical Agro-Ecosystems Cultivating Sweet Sorghum

  • Kumar, C. Ganesh;Kamle, Avijeet;Mongolla, Poornima;Joseph, Joveeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.947-953
    • /
    • 2011
  • A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71-0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of $30^{\circ}C$. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.

Evaluating the Headspace Volatolome, Primary Metabolites, and Aroma Characteristics of Koji Fermented with Bacillus amyloliquefaciens and Aspergillus oryzae

  • Seo, Han Sol;Lee, Sunmin;Singh, Digar;Park, Min Kyung;Kim, Young-Suk;Shin, Hye Won;Cho, Sun A;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1260-1269
    • /
    • 2018
  • Production of good Koji primarily depends upon the selection of substrate materials and fermentative microflora, which together influence the characteristic flavor and aroma. Herein, we performed comparative metabolomic analyses of volatile organic compounds (VOCs) and primary metabolites for Koji samples fermented individually with Bacillus amyloliquefaciens and Aspergillus oryzae. The VOCs and primary metabolites were analyzed using headspace solid phase microextraction (HS-SPME) followed by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). In particular, alcohols, ketones, and furans were mainly detected in Bacillus-fermented Koji (Bacillus Koji, BK), potentially due to the increased levels of lipid oxidation. A cheesy and rancid flavor was characteristic of Bacillus Koji, which is attributable to high content of typical 'off-flavor' compounds. Furthermore, the umami taste engendered by 2-methoxyphenol, (E,E)-2,4-decadienal, and glutamic acid was primarily detected in Bacillus Koji. Alternatively, malty flavor compounds (2-methylpropanal, 2-methylbutanal, 3-methylbutanal) and sweet flavor compounds (monosaccharides and maltol) were relatively abundant in Aspergillus-fermented Koji (Aspergillus Koji, AK). Hence, we argue that the VOC profile of Koji is largely determined by the rational choice of inocula, which modifies the primary metabolomes in Koji substrates, potentially shaping its volatolome as well as the aroma characteristics.

Biological Activity and Biochemical Properties of Silkworm (Bombyx mori L.) Powder Fermented with Bacillus subtilis and Aspergillus kawachii (유용식용 균주에 의한 발효 누에분말의 이화학적 특성과 생리활성)

  • Cha, Jae-Young;Kim, Yong-Soon;Ahn, Hee-Young;Kang, Min-Jung;Heo, Su-Jin;Cho, Young-Su
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • Biological activities (${\alpha},{\alpha}'$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) free radical scavenging activity, fibrinolytic activity and reducing power) and biochemical properties (protein content and electrophoretical protein patterns) were examined in solid state fermentation with Bacillus subtilis and Aspergillus kawachii using silkworm powder (SP) as substrate. The highest protein contents and free radical scavenging activities were seen in the SP fermented for 12 days with B. subtilis and A. kawachii, and these were in a time-dependent manner. The highest reducing power was seen in the SP fermented for 6 days with B. subtilis and for 12 days with A. kawachii, respectively. The highest fibrinolytic activities were seen in silkworm fermented for 6 days with B. subtilis and A. kawachii, but this activity was higher in the A. kawachii fermented SP than that of B. subtilis. When total protein patterns were analyzed by SDS-polyacrylamide gel electrophoresis (PAGE), the proteins of the SP fermented with B. subtilis for 3 days were completely degraded, while the protein degradation in the SP fermented with A. kawachii occurred after 12 days and this degradation increased proportionally to culture time. As a result, the SP fermented with both B. subtilis and A. kawachii showed higher fibrinolytic activities after 6 days of fermentation and antioxidative activity after 12 days, indicating that physiological activities of the fermented SP using these strains were highly improved compared to the unfermented SP, and that this compound could be a candidate material as a dietary supplement of healthy functional foods.