DOI QR코드

DOI QR Code

Parametric Optimization of Feruloyl Esterase Production from Aspergillus terreus Strain GA2 Isolated from Tropical Agro-Ecosystems Cultivating Sweet Sorghum

  • Kumar, C. Ganesh (Chemical Biology Laboratory, Indian Institute of Chemical Technology) ;
  • Kamle, Avijeet (Chemical Biology Laboratory, Indian Institute of Chemical Technology) ;
  • Mongolla, Poornima (Chemical Biology Laboratory, Indian Institute of Chemical Technology) ;
  • Joseph, Joveeta (Chemical Biology Laboratory, Indian Institute of Chemical Technology)
  • Received : 2011.04.12
  • Accepted : 2011.05.05
  • Published : 2011.09.28

Abstract

A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71-0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of $30^{\circ}C$. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.

Keywords

References

  1. Aguilar, C. N., C. Augur, E. Favela-Torres, and G. Viniegra-Gonzalez. 2001. Induction and repression patterns of fungal tannase in solid state and submerged cultures. Process Biochem. 36: 565-570. https://doi.org/10.1016/S0032-9592(00)00251-X
  2. Aguilar, C. N., C. Augur, E. Favela-Torres, and G. Viniegra-Gonzalez. 2001. Production of tannase by Aspergillus niger Aa-20 in submerged and solid state fermentation: Influence of glucose and tannic acid. J. Ind. Microbiol. Biotechnol. 26: 296-302. https://doi.org/10.1038/sj.jim.7000132
  3. Asther, M., M. Haon, S. Roussos, E. Record, M. Delattre, L. Lesage-Meessen, and M. Labat. 2002. Feruloyl esterase from Aspergillus niger - A comparison of the production in solid state and submerged fermentation. Process Biochem. 38: 685-691. https://doi.org/10.1016/S0032-9592(02)00196-6
  4. Benoit, I., D. Navarro, N. Marnet, N. Rakotomanomana, L. Lesage-Meessen, J. C. Sigoillot, M. Asther, and M. Asther. 2006. Feruloyl esterases as a tool for the release of phenolic compounds from agro-industrial by-products. Carbohydr. Res. 341: 1820-1827. https://doi.org/10.1016/j.carres.2006.04.020
  5. Castanares, A., S. I. McCrae, and T. M. Wood. 1992. Purification and properties of a feruloyl/p-coumaroyl esterase from the fungus Penicillium pinophilum. Enzyme Microb. Technol. 14: 875-884. https://doi.org/10.1016/0141-0229(92)90050-X
  6. Crepin, V. F., C. B. Faulds, and I. F. Connerton. 2004. Functional classification of the microbial feruloyl esterases. Appl. Microbiol. Biotechnol. 63: 647-652. https://doi.org/10.1007/s00253-003-1476-3
  7. Deobald, L. A. and D. L. Crawford. 1987. Activities of cellulase and other extracellular enzymes during lignin solubilisation by Streptomyces viridosporus. Appl. Microbiol. Biotechnol. 26: 158-163. https://doi.org/10.1007/BF00253902
  8. Diaz-Godinez, G., J. Soriano-Santos, C. Augur, and G. Viniegra-Gonzalez. 2001. Exopectinases produced by Aspergillus niger in solid state and submerged fermentation: A comparative study. J. Ind. Microbiol. Biotechnol. 265: 271-275.
  9. Donaghy, J. A. and A. M. McKay. 1995. Production of feruloyl/ $\rho$-coumaroyl esterase activity by Penicillium expansum, Penicillium brevicompactum and Aspergillus niger. J. Appl. Bacteriol. 79: 657-662. https://doi.org/10.1111/j.1365-2672.1995.tb00951.x
  10. Donaghy, J., P. F. Kelly, and A. M. McKay. 1998. Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Appl. Microbiol. Biotechnol. 50: 257-260. https://doi.org/10.1007/s002530051286
  11. Faulds, C. B., B. Bartolome, and G. Williamson. 1997. Novel biotransformations of agro-industrial cereal waste by ferulic acid esterases. Ind. Crops Prod. 6: 367-374. https://doi.org/10.1016/S0926-6690(97)00027-7
  12. Fazary, A. E. and Y. H. Ju. 2008. The large-scale use of feruloyl esterases in industry. Biotechnol. Mol. Biol. Rev. 3: 95-110.
  13. Fazary, A. E. and Y. H. Ju. 2008. Production, partial purification and characterization of feruloyl esterases by Aspergillus awamori in submerged fermentation. Biotechnol. J. 3: 1264-1275. https://doi.org/10.1002/biot.200800101
  14. Fry, S. C. 1982. Phenolic components of the primary cell wall. Biochem. J. 203: 493-502. https://doi.org/10.1042/bj2030493
  15. Garcia-Conesa, M. T., V. F. Crepin, A. J. Goldson, G. Williamson, N. J. Cummings, I. F. Connerton, C. B. Faulds, and P. A. Kroon. 2004. The feruloyl esterase system of Talaromyces stipitatus: Production of three discrete feruloyl esterases, including a novel enzyme, TsFaeC, with broad substrate specificity. J. Biotechnol. 108: 227-241. https://doi.org/10.1016/j.jbiotec.2003.12.003
  16. Hegde, S. and G. Muralikrishna. 2009. Isolation and partial characterization of alkaline feruloyl esterases from Aspergillus niger CFR 1105 grown on wheat bran. World J. Microbiol. Biotechnol. 25: 1963-1969. https://doi.org/10.1007/s11274-009-0095-2
  17. Hill, S. E. and D. A. Gray. 1999. Effect of sulphite and propyl gallate or ferulic acid on the thermal depolymerisation of food polysaccharides. J. Sci. Food Agric. 79: 471-475. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<471::AID-JSFA269>3.0.CO;2-0
  18. Jeffries, T. W. 1990. Biodegradation of lignin carbohydrate complexes. Biodegradation 1: 163-176. https://doi.org/10.1007/BF00058834
  19. Kroon, P. A. and G. Williamson. 1999. Hydroxycinnamates in plants and food: Current and future perspectives. J. Sci. Food Agric. 79: 355-361. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<355::AID-JSFA255>3.0.CO;2-G
  20. Kumar, C. G., P. Mongolla, J. Joseph, Y. V. D. Nageswar, and A. Kamal. 2010. Antimicrobial activity from the extracts of fungal isolates of soil and dung samples from Kaziranga National Park, Assam, India. J. Mycol. Med. 20: 283-289. https://doi.org/10.1016/j.mycmed.2010.08.002
  21. Marmuse, L., M. Asther, D. Navarro, L. Lesage-Meessen, M. Asther, S. Fort, and H. Driguez. 2007. Chromogenic substrates for feruloyl esterases. Carbohydr. Res. 342: 2316-2321. https://doi.org/10.1016/j.carres.2007.06.004
  22. Mastihuba, V., L. Kremnicky, M. Mastihubova, J. L. Willett, and G. L. Cote. 2002. A spectrophotometric assay for feruloyl esterases. Anal. Biochem. 309: 96-101. https://doi.org/10.1016/S0003-2697(02)00241-5
  23. Mastihubova, M., V. Mastihuba, L. Kremnicky, J. L. Willett, and G. L. Cote. 2001. Chemoenzymatic preparation of novel substrates for feruloyl esterases. Synlett 10: 1559-1560.
  24. Mathew, S. and T. E. Abraham. 2004. Ferulic acid: An antioxidant found naturally in plant cell walls and feruloyl esterases involved in its release and their applications. Crit. Rev. Biotechnol. 24: 59-83. https://doi.org/10.1080/07388550490491467
  25. Mathew, S. and T. E. Abraham. 2005. Studies on the production of feruloyl esterase from cereal brans and sugar cane bagasse by microbial fermentation. Enzyme Microb. Technol. 36: 565-570. https://doi.org/10.1016/j.enzmictec.2004.12.003
  26. Minjares-Carranco, A., B. A. Trejo-Aguilar, G. Aguilar, and G. Viniegra-Gonzalez. 1997. Physiological comparison between pectinase-producing mutants of Aspergillus niger adapted either to solid-state fermentation or submerged fermentation. Enzyme Microb. Technol. 21: 25-31. https://doi.org/10.1016/S0141-0229(96)00212-8
  27. Mueller-Harvey, I., R. D. Hartley, P. J. Harris, and E. H. Curzon. 1986. Linkage of p-coumaroyl and feruloyl groups to cell wall polysaccharides of barley straw. Carbohydr. Res. 148: 71-85. https://doi.org/10.1016/0008-6215(86)80038-6
  28. Ou, S. Y. and K. C. Kwok. 2004. Ferulic acid: Pharmaceutical functions, preparation and applications in foods. J. Sci. Food Agric. 84: 1261-1269. https://doi.org/10.1002/jsfa.1873
  29. Pandey, A., C. R. Socool, and D. Mitchell. 2000. New developments in solid-state fermentation. I. Bioprocess and products. Process Biochem. 35: 1153-1169. https://doi.org/10.1016/S0032-9592(00)00152-7
  30. Pouchert, C. J. 1976. The Aldrich Library of NMR Spectra, Vol. 2, 2nd Ed., pp. 180-180. Aldrich Chemical Company Inc., Milwaukee, Wisconsin.
  31. Record, E., M. Asther, C. Sigoillot, S. Pages, P. J. Punt, M. Delattre, et al. 2003. Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching application. Appl. Microbiol. Biotechnol. 62: 349-355. https://doi.org/10.1007/s00253-003-1325-4
  32. Saha, B. C. 2003 Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30: 279-291. https://doi.org/10.1007/s10295-003-0049-x
  33. Shin, H. D. and R. R. Chen. 2006. Production and characterization of a type B feruloyl esterase from Fusarium proliferatum NRRL 26517. Enzyme Microb. Technol. 38: 478-485. https://doi.org/10.1016/j.enzmictec.2005.07.003
  34. Tabka, M. G., I. Herpoel-Gimbert, F. Monod, M. Asther, and J. C. Sigoillot. 2006. Enzymatic saccharification of wheat straw for bioethanol production by a combined cellulase xylanase and feruloyl esterase treatment. Enzyme Microb. Technol. 39: 897-902. https://doi.org/10.1016/j.enzmictec.2006.01.021
  35. Topakas, E., E. Kalogeris, D. Kekos, B. J. Macris, and P. Christakopoulos. 2003. Production and partial characterisation of feruloyl esterase by Sporotrichum thermophile in solid-state fermentation. Process Biochem. 38: 1539-1543. https://doi.org/10.1016/S0032-9592(03)00044-X
  36. Topakas, E. and P. Christakopoulos. 2004. Production and partial characterization of alkaline feruloyl esterases by Fusarium oxysporum during submerged batch cultivation. World J. Microbiol. Biotechnol. 20: 245-250. https://doi.org/10.1023/B:WIBI.0000023830.38119.3f
  37. Topakas, E., C. Vafiadi, and P. Christakopoulos. 2007. Microbial production, characterization and applications of feruloyl esterases. Process Biochem. 42: 497-509. https://doi.org/10.1016/j.procbio.2007.01.007
  38. Walton, N. J., A. Narbad, C. B. Faulds, and G. Williamson. 2000. Novel approaches to the biosynthesis of vanillin. Curr. Opin. Biotechnol. 11: 490-496. https://doi.org/10.1016/S0958-1669(00)00125-7
  39. Williamson, G., P. A. Kroon, and C. B. Faulds. 1998. Hairy plant polysaccharides: A close shave with microbial esterases. Microbiology 144: 2011-2023. https://doi.org/10.1099/00221287-144-8-2011
  40. Yu, P., D. D. Maenz, J. J. McKinnon, V. J. Racz, and D. A. Christensen. 2002. Release of ferulic acid from oat hulls by Aspergillus ferulic acid esterase and Trichoderma xylanase. J. Agric. Food Chem. 50: 1625-1630. https://doi.org/10.1021/jf010984r

Cited by

  1. Purification and biochemical characterization of feruloyl esterases fromAspergillus terreusMTCC 11096 vol.29, pp.4, 2011, https://doi.org/10.1002/btpr.1729
  2. Solid-state fermentation for the production of biomass valorizing feruloyl esterase vol.7, pp.None, 2011, https://doi.org/10.1016/j.bcab.2016.04.009
  3. Optimization of Pectinase Production by Aspergillus Oryzae RR 103 vol.6, pp.1, 2011, https://doi.org/10.12944/carj.6.1.05
  4. Optimization of fermentation conditions for the production of recombinant feruloyl esterase from Burkholderia pyrrocinia B1213 vol.10, pp.5, 2011, https://doi.org/10.1007/s13205-020-02198-1