• Title/Summary/Keyword: Solid State Power Amplifier

Search Result 52, Processing Time 0.026 seconds

Design and Fabrication of C-Band GaN Based on Solid State High Power Amplifier Unit for a Radar System (레이다용 C-대역 GaN 기반 고출력전력증폭장치 설계 및 제작)

  • Jung, Hyoung Jin;Park, Ji Woong;Jin, Hyoung Seok;Lim, Jae Hwan;Park, Se Jun;Kang, Min Woo;Kang, Hyun Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.685-697
    • /
    • 2017
  • In this paper, it is presented the result of design and fabrication for C-band solid state high power amplifier unit and components using in search radar. The solid state power amplifier(SSPA) assembly was fabricated using GaN(Gallium Nitride), which is semiconductor device, and the transmit signal output power of the solid state high power amplifier unit is generated by combining the transmit signal power of the solid state power amplifier configured in parallel through a design and fabricated waveguide type transmit signal combine assembler. Designed solid state high power amplifier unit demonstrated C-band 500 MHz bandwidth, maximum 10.5% duty cycle, transmit pulse width from $0.0{\mu}s{\sim}000{\mu}s$, and transmit signal power is 44.98 kW(76.53 dBm).

Design and fabrication on 2.7-2.9 GHz, 1.5 kW pulsed Solid state power amplifier (1.5 kW, 2.7-2.9 GHz, 반도체 펄스 전력 증폭기 설계 및 제작)

  • Jang, S.M.;Choi, G.W.;Joo, J.H.;Choi, J.J.;Park, D.M.
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.91-96
    • /
    • 2005
  • In this paper, describes the design and performance of a 1.5 kW solid-state pulsed power amplifier, operating over 2.7-2.9 GHz at a duty of 10% and with a pulse width of 100 us for radar application. The solid-state pulsed power amplifier configures a series of 8-stage cascaded power amplifier with different RF output power levels. Low loss Wilkinson combiners are used to combine output powers of six 300W high power solid state modules. Tests show peak output power of 1.61 kW, corresponding to PAE of 26.2% over 2.7-2.9 GHz with pulse width of 100 us and a PRF of 1 kHz.

  • PDF

Implementation of the 200-Watts SSPA for X-band Pulse Compression Solid State Radar (X-대역 펄스압축 Solid State Radar를 위한 200W SSPA 개발)

  • Kim, Min-Soo;Lee, Chun-Sung;Lee, Sang-Rock;Rhee, Young-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.22-29
    • /
    • 2009
  • In this paper, we developed the 200-Watts SSPA(Solid State Power Amplifier) for the X-band pulse compression solid state radar. The developed X-band SSPA is consists of 3-stage CSA(Corporate Structured Amplifier) modules in pre-amplifier stage, driver-amplifier stage and main-power amplifier stage. The main-power amplifier stage of SSPA designed by balanced type using GaN HEMT with enough power and gain to generate power more than 200-Watts in X-band. The developed SSPA has performance with more than total gain 59dB and output power 200-Watts in condition of frequency range 9.2-9.6GHz, pulse period 1msec, pulse width 100usec and duty cycle 10%. The developed SSPA in this paper can apply to high quality solid state radar system with pulse compression technique.

UHF-Band 1 kW Solid State Pulsed Power Amplifier for Thermoacoustic Imaging Application (열음향 응용을 위한 1 kW급 UHF 대역 반도체 펄스 전력증폭기)

  • Lee, Seung-Min;Park, Seung-Pyo;Choi, Seung-Bum;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.92-95
    • /
    • 2016
  • In this paper, an UHF-band 1 kW solid-state pulsed power amplifier was designed and implemented for the thermoacoustic imaging(TAI) at 900 MHz. The designed power amplifier has a pulse width of $80{\mu}s$ and a duty cycle of 1 % for short-pulse operation. The overall amplifier was implemented by combining of 16 single-power amplifiers adopting MRFE6P9220HR3 LDMOSFET using wilkinson power dividers. The solid-state pulsed power amplifier shows 25 % drain efficiency with a gain of 76.2 dB when the output power is 60.2 dBm for a -16 dBm input power at center frequency.

Design and fabrication on 7-11 GHz, Broadband MPM (7-11 GHz, 광대역 MPM 설계 및 제작)

  • Choi Gil-Woong;Lee Yu-Ri;Kim Ki-Ho;Choi Jin-Joo;So Joon-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.5 no.1 s.9
    • /
    • pp.13-19
    • /
    • 2006
  • In this paper, a broadband Microwave Power Module(MPM) operating at 7 - 11 GHz is designed and fabricated. The MPM consists of a SSA (Solid State Amplifier) and a conventional TWT (traveling Wave Tube). This combined module takes advantage of a low noise and high gain of SSA. The computer modeling and simulation of the SSA are designed by the use of the ADS (Advanced Design System) software. The SSA is designed by configurating the CSSDA (Cascaded Single Stage Distributed Amplifier). The broadband MPM is measured to be noise figure 8.3 - 10.02 dB at 7 - 11 GHz bandwidth, output power of 38.12 dBm at 9 GHz.

  • PDF

A Design for Solid-State Radar SSPA with Sequential Bias Circuits (순차바이어스를 이용한 반도체 레이더용 SSPA 설계)

  • Koo, Ryung-Seo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2479-2485
    • /
    • 2013
  • In this paper, we present a design for solid-state radar SSPA with sequential bias. We apply to variable extension pulse generator to eliminate signal distortion which is caused by bias rising/falling delay of power amplifier. There is an optimum impedance matching circuit to have high efficiency of GaN-power device by measuring microwave characteristics through load-pull method. The designed SSPA is consisted of pre-amplifier, drive-amplifier and main-amplifier as a three stages to apply for X-Band solid-state radar. Thereby we made a 200W SSPA which has output pulse maximum power shows 53.67dBm and its average power is 52.85dBm. The optimum design of transceiver module for solid-state pulse compression radar which is presented in this dissertation, it can be available to miniaturize and to improve the radar performances through additional research for digital radar from now on.

High power X-band SSPA Design using Gysel Power Combiner (Gysel 전력결합기를 이용한 고출력 X-band SSPA 설계)

  • Lee, Sang-Rok;Lim, Eun-Jae;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.4
    • /
    • pp.425-432
    • /
    • 2014
  • Necessity of compact X-band solid-state weather radar is required to provide weather data, which generate locally in a lot of Korea's mountainous area, rather than tube-type radar. Solid State Power Amplifier (SSPA) for using Dual-polarization method in weather radar is able to obtain desired high output by combining many low output power devices in parallel. Thus, Power combiner applying to high-output power amplifier has disadvantages such as path loss, ballast resistance problem by high frequency and high power, heat release. Therefore, In this paper we demonstrated the excellence of isolation, which is the result from modified Gysel power combiner. As a result, we designed X-band 250W solid state power amplifier with peak power 54dBm, 25% power efficiency for weather radar.

Study on the Ku band Solid-State Power Amplifier(SSPA) through the 40 W-grade High Power MMIC Development and the Combination of High Power Modules (40 W급 고출력 MMIC 개발과 고출력 증폭기 모듈 결합을 통한 Ku 밴드 반도체형 송신기(SSPA) 개발에 관한 연구)

  • Kyoungil Na;Jaewoong Park;Youngwan Lee;Hyeok Kim;Hyunchul Kang;SoSu Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.227-233
    • /
    • 2023
  • In this paper, to substitute the existing TWTA(Travailing Wave Tube Amplifier) component in small radar system, we developed the Ku band SSPA(Solid-State Power Amplifier) based on the fabrication of power MMIC (Monolithic Microwave Integrated Circuit) chips. For the development of the 500 W SSPA, the 40 W-grade power MMIC was designed by ADS(Advanced Design System) at Keysight company with UMS GH015 library, and was processed by UMS foundry service. And 70 W main power modules were achieved the 2-way T-junction combiner method by using the 40 W-grade power MMICs. Finally, the 500 W SSPA was fabricated by the wave guide type power divider between the drive power amplifier and power modules, and power combiner with same type between power modules and output port. The electrical properties of this SSPA had 504 W output power, -58.11 dBc spurious, 1.74 °/us phase variation, and -143 dBm/Hz noise level.