• Title/Summary/Keyword: Solid Propulsion

Search Result 526, Processing Time 0.029 seconds

One-Dimensional Modeling of Hydrogen Generator (수소발생기의 일차원 모델링)

  • Park, Jae Hyun;Lee, Hyojin;Valderrama, Edgar Willy Rimarachin;Yim, Chungsik;Yang, Heesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.74-86
    • /
    • 2018
  • This paper presents the one-dimensional model of a hydrogen generator, where the alkali solution was supplied from the top to the dry aluminum powders. Hydrogen was produced as the solution moved downward and reacted with aluminum. The species conservation equations were considered for the hydrogen gas and alkali solution, while the energy conservation equation was applied to the gas-liquid-solid mixture as a single medium. The gas rising velocity and liquid penetration velocity were also included in the theoretical approach. The developed code was validated with the experimental data of the hydrogen production amount and collector pressure. Additionally, the model successfully predicted the various reactor properties, such as the concentrations, volume fractions, and temperatures, and is expected to help significantly in the design of a novel hydrogen generator.

Study on Transient Analysis of Hot Gas Valve with Pintle (핀틀이 적용된 고온 가스 밸브의 비정상상태 해석 기법에 관한 연구)

  • Lee, Kyungwook;Heo, Seonuk;Kwon, Sejin;Lee, Jongkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.152-159
    • /
    • 2018
  • A numerical simulation was conducted to establish the analysis methods of the unsteady conjugated heat transfer with a hot gas valve. Two methods are proposed to reduce the computational cost and analysis time of the unsteady conjugate heat transfer; namely, the multi-section analysis method and the one-way analysis method. The multi-section analysis method exhibits relatively high reliability. In the one-way analysis method, the unsteady conjugate heat transfer from the fluid domain to the solid domain was simulated from the analysis results of the steady-state flowfield. The incipient accuracy of the analysis results obtained by the one-way analysis method was slightly lower than that of the results obtained by the multi-section analysis method. However, the discrepancy became smaller with time, as the analysis progressed.

An Evaluation on Thermal-structural Behavior of Nozzle Assembly during Burning Time (연소시간 중 노즐조립체의 열-구조적 거동분석에 관한 연구)

  • Ro, Younghee;Seo, Sangkyu;Jeong, Seongmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.36-43
    • /
    • 2018
  • A great deal of difficulty is encountered in the thermo-mechanical analyses of nozzle assemblies for solid propellant rocket motors. The main issue in this paper is the modeling of the boundary conditions and the connections between the various components-gaps, relative movements of the components, contacts, friction, etc. This paper evaluates the complex phenomena of nozzle assemblies during burning time with co-simulations that include fluid, thermal surface reaction/ablation, and structural analysis. The validity of this approach is verified via comparison of analysis results with measured strains.

Study on the Experimental Aging Estimation Technique for HTPB based Solid Propellant Considering Post Curing Effect (후경화를 고려한 HTPB 고체 추진제의 실험적 노화평가 기법 연구)

  • Jung, Gyoo Dong;Park, Jae Beom;Kim, Shinhoe
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.3
    • /
    • pp.51-57
    • /
    • 2019
  • Post curing effects are estimated by specimen tests. Propellant specimen accelerated aging tests are performed when post curing is estimated to be complete and the coefficients of Arrhenius aging equations are acquired. Simulated motors with cylindrical grain are designed and fabricated to confirm the application. Accelerated aging tests are conducted, and aged properties are measured and estimated for the inner bore, center and bond parts of the grain. The measured aging ratios of the modulus are compared with the ones predicted by the equations. As the results, the accelerated aging equations predict well the propellant aging trends; however, some differences are observed at the bond part. Therefore, the specimen extraction part must be carefully chosen to suit the test purpose when a rocket motor grain is used for the aging test.

Performance Analysis of Pyrotechnic Devices on the Reliability of Thermal Batteries (열전지의 신뢰성에 미치는 파이로테크닉 부품의 특성분석)

  • Cheong, Hae-Won;Kang, Sung-Ho;Kim, Kiyoul;Cho, Jang-Hyeon;Ryu, Byungtae;Baek, Seung-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.116-123
    • /
    • 2019
  • Thermal batteries are also called molten-salt batteries as the electrolyte is mainly composed of molten salt. The molten-salt electrolyte is a solid that does not conduct electricity at room temperature, but when it is melted by a pyrotechnic heat source, it becomes an excellent ionic conductor. Thermal batteries are a kind of pyrotechnic battery because they operate only when the solid electrolyte is melted by the heat energy provided by pyrotechnic materials. Pyrotechnic components used in a thermal battery include heat sources, fuse strips, and an igniter. The reliability of these pyrotechnic components critically affects the reliability and performance of the battery that must supply electricity stably to guided munitions even under extreme environmental conditions. Different igniter types offer different advantages: notch-type igniters offer improved ignition probability, whereas film-type igniters offer improved safety. The addition of metal oxides to the heat paper could improve the burn rate, and the ignition reliability could be greatly improved by using it with a flame igniter at the same time. Using a two-step reduction process, high-purity Fe particles in coral form can be safely obtained.

Burn-back Analysis for Propellant Grains with Embedded Metal Wires (금속선이 삽입된 추진제 그레인의 Burn-back 해석)

  • Lee, Hyunseob;Oh, Jongyun;Yang, Heesung;Lee, Sunyoung;Khil, Taeock
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.12-19
    • /
    • 2022
  • Propellant grains with embedded metal wires have been used for enhancement of burning rate while maintaining high loading density. For the performance design of a solid rocket motor using propellant grain with embedded metal wires, burn-back analysis is required according to number, location, arrangement angle of metal wires, and augmentation ratio of the propellant burning rate near a wire region. In this study, a numerical method to quickly calculate a burning surface area was developed in response to the design change of the propellant grain with embedded metal wires. The burning surface area derived from the developed method was compared with the results of a CAD program. Error rate decreased as the radial size of the grid decreased. Analysis for characteristics of burning surface area was performed according to the number and location of metal wires, the initial and final phases were shortened and the steady-state phase was increased when the number of metal wires increased. When arranging the metal wires at different radii, the burning surface area rapidly increased in the initial phase and sharply decreased in the final phase compared to the case where the metal wires were disposed in the same radius.

Performance Analysis of Gasoline Fueled Marine Solid Oxide Fuel Cell System (가솔린 연료형 SOFC시스템 성능 평가에 관한 연구)

  • Oh, Jin-Suk;Lee, Kyung-Jin;Kim, Sun-Hee;Park, Sang-Kyun;Kim, Mann-Eung;Lim, Tae-Woo;Kim, Jong-Su;Oh, Sae-Jin;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.740-749
    • /
    • 2011
  • The strengthened regulations for atmospheric emissions from ships have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. Recently, new kinds of propulsion power system such as fuel cell system, which use hydrogen as an energy source, have been sincerely considered. The purpose of this work is to predict the performance of gasoline fueled SOFC system and to analyze the influence of operating temperature, current density, S/C, and H2 utilization ratio. The results are compared with the methane fueled system. The results show that the cell voltage and $O_2$ utilization ratio are major factors on the performance of system and the gasoline fueled SOFC system have lower efficiency than the methane fueled system.

Design of Fastener for Solid Rocket Motor Using Solid CAD System (CAD 시스템에서의 고체추진기관 체결류 설계에 대한 연구)

  • Lee, Kang-Soo;Kim, Won-Hoon;Seok, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.805-811
    • /
    • 2010
  • When we design a product, we spend a considerable amount of time in designing fasteners and their mating parts. Fasteners have special features because of which they are widely used and well standardized. Although we use some equations to design the fasteners, we should select these fasteners from the standardized table. In order to design them quickly using the CAD system, we proceeded as follows. First, we prepared some standardized shapes of fasteners to design them automatically. Next, we built a database of some fasteners such as a tension bolt, lock wire, thread, pin, and snap ring. Then, we used the design equations to quickly and precisely calculate the various parameters. Finally, we used a configuration design method to generate the shapes automatically using the results of the calculation and the values retrieved from the database. We applied this approach to the design of a propulsion structure, and demonstrated that this approach worked well and saved considerable time.

STUDY ON VIEW FACTOR CALCULATION FOR RADIATIVE HEAT TRANSFER BY USING THE MESH SUBDIVISION METHOD (격자 세분화 방법을 고려한 복사열전달 형상계수 계산 기법 연구)

  • Kim, D.G.;Han, K.I.;Choi, J.H.;Lee, J.J.;Kim, T.K.
    • Journal of computational fluids engineering
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Since experiments on the actual operational status are said to be very impractical because of their economic and repeatability problems, it is difficult to understand the thermal profiles of aerospace or military equipments. Thus, the CFD codes with considering the radiation heat transfer are used to compensate the defect. In case, analyzing the radiation exchanges between the object surfaces are very important. Because the temperature and the IR signal distributions of the object surface are significantly affected by the radiative heat transfer. To achieve accurate thermal radiation exchange between surfaces, it is important to calculate the radiation view factor precisely. Finer subdivision of meshes can be used to increase the accuracy of radiation view factor, but if the mesh is subdivided infinitely, the time required for calculation increases significantly and thus decreasing the efficiency. If the subdivision is not sufficient, assurance of accuracy is not guaranteed. In this paper, optimal mesh subdivision method using the solid angle has been successfully tested and found to be useful in increasing the efficiency of calculating the shape factors.

Performance Analysis of Methanol Fueled Marine Solid Oxide Fuel Cell and Gas Turbine Hybrid Power System (메탄올 연료형 SOFC/GT 하이브리드시스템의 성능 평가)

  • Oh, Sae-Gin;Lim, Tae-Woo;Kim, Jong-Su;Kil, Byung-Lea;Park, Sang-Kyun;Kim, Mann-Eung;Lee, Kyung-Jin;Oh, Jin-Suk;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1040-1049
    • /
    • 2010
  • The strengthened regulations for atmospheric emissions from ships have caused a necessity of new, alternative power system in ships for the low pollutant emissions and the high energy efficiency. Recently, new kinds of propulsion power system such as fuel cell system, which use hydrogen as an energy source, have been sincerely considered. The purpose of this work is to predict the performance of methanol fueled SOFC/GT hybrid power system and to analyze the influence of operating temperature of stack, current density of stack, pressure ratio of turbine, temperature effectiveness of recuperator, turbine inlet temperature.