• 제목/요약/키워드: Solenoid Driving Circuit

검색결과 13건 처리시간 0.023초

솔레노이드 구동 수소인젝터의 성능예측 (Performance Prediction of solenoid Actuated Hydrogen Injector)

  • 이형승;이용규;김한조;김응서
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.174-185
    • /
    • 1997
  • The performance of the solenoid actuated hydrogen injector and the capacitive peak-hold type driving circuit was predicted through the modeling of the injector and the driving circuit the modeling was composed of the driving circuit, the solenoid, the moving parts of the injector, and the hydrogen injection system. The performance of the injector through the modeling was compared with the results of the solenoid and injector rig tests, and those were consistent with each other. Through the prediction of the injector performance, the effects of the components such as electrical resistor, capacitor, and injector spring are easily known to the injector performance required.

  • PDF

안전성 증대를 위해 솔레노이드를 적용한 신관 안전장전장치 설계 (Design of Safety and Arming Device of the Fuze using Solenoid for Improving Safety)

  • 안지연;정명숙;김기륙
    • 전자공학회논문지
    • /
    • 제51권10호
    • /
    • pp.197-203
    • /
    • 2014
  • 신관 안전장전장치는 비행체의 수송, 저장, 취급 중의 안전을 절대적으로 보장하도록 설계되어야 한다. 본 논문에서는 비행체에 적용되는 신관 안전장전장치의 안전성을 증대시키기 위한 솔레노이드 조립체와 솔레노이드 조립체를 구동하기 위한 솔레노이드 구동회로를 포함한 신관 안전장전장치 설계에 대해 기술한다. 솔레노이드 조립체는 신관 안전장전장치에 적용한 추가적인 안전장치로서, 코일 조립체, 복원스프링, 코어 등으로 구성된다. 솔레노이드 조립체의 코어는 평상시에는 1차 안전장치를 구속하고 있어 1차 안전장치가 작동하는 것을 저지해줌으로써 비행체의 취급이나 수송 시 안전을 확보해주게 되며, 발사를 위한 비행체 배터리 전원이 인가 및 활성화되어 신관 안전장전장치에 공급되면, 솔레노이드 구동회로가 코어를 작동시켜 신관 안전장전장치의 1차 및 2차 안전장치를 해제시키는 역할을 한다. 또한, 솔레노이드 구동회로는 비행체 발사 이후, 신관 안전장전장치의 기계적 장전이 완료되어 장전스위치가 turn-on되면 솔레노이드 조립체에 인가되는 전원을 자동 차단시켜 비행 중의 전원 소모량을 줄일 수 있도록 하였다.

직접분사식 가솔린 선회분사기 개발에 관한 연구 II (Development of Gasoline Direct Swirl Injector II)

  • 박용국;이충원
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.76-84
    • /
    • 2001
  • Generally fuel injection system using solenoid have some problems between control signal and mechanical movement like as time lag. Main purpose of the present study is to help the design optimization of GDSI for real engine application. We have adopted two different solenoid driving circuit, namely saturation and pick-hold type and have investigated experimentally the current, needle force, needle opening duration and injection quantity. The pick-hold type driving circuit surpassed a saturation type in the response time and pression control of injection quantity. Accordingly, Using characterization data of operating factors such as time constant, driving force and so on, can be evaluated and adjusted to obtain an optimum injector performance.

  • PDF

솔레노이드 구동 수소인젝터의 성능특성 (Characteristics of Solenoid Actuated Hydrogen Injector)

  • 이형승;김한조;김응서
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.134-144
    • /
    • 1995
  • The solenoid actuated hydrogen injector and the capacitive peak-hold type driving circuit were designed and made, and the hydrogen supply system for in-cylinder injection was constructed with these. The performance of the injector was investigated through measuring the pintle lift profiles and the injection quantities, and the performance of the hydrogen supply system was confirmed through the experiments at the single cylinder engine. The injection quantity increased linearly as the duration of driving signal increased. At the single cylinder engine, the hydrogen injector was operated stably. The hydrogen flow rate of the injector with the peak-hold type driving circuit could be controlled precisely at high engine speed or low load condition only with the variation of signal duration.

  • PDF

솔레노이드를 사용한 정압 연료분사 장치의 제어에 관한 연구 (A Study on the Control of a Constant Pressure Fuel Injection System Using Solenoid)

  • 윤수한;이중순;김현지;배종용;하종률
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.229-237
    • /
    • 1996
  • For the practical use of a fuel injection system using solenoid, some mechanical and electrical problems should be explicitly analyzed. In our study, we have investigated these problems experimentally and have improved such that a solenoid driving circuit is liable to establish a fast reponse and a precise control of injection quantity. This proposed fuel injecton system is capable to control equivalence ratio from low level to high level. Therefore, we expect that this proposed system should be applicable to an actual engine.

  • PDF

2방향 전자밸브의 PWM 신호에 의한 압력제어 특성 (Pressure Control Characteristics of a 2-Way Solenoid Valve Driven by PWM Signal)

  • 정헌술;김형의
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1565-1576
    • /
    • 2002
  • By way of driving a 2-way on/off solenoid hydraulic valve with a pulse width modulation (PWM) signal, control of the pressure in a certain volume is frequently used in various applications. However, the pressure built-up according to the duty ratio and carrier frequency of the PWM signal is not so well understood. In order to clarify the characteristics of 2-way valve hydraulic pressure control systems, in this paper two formula fur the mean and ripple of the load pressure were derived through theoretical analysis. And the accuracy of the derived formula were verified by comparison with the experimental test result. Generally 2-way valve systems are constructed as a bleed-off circuit, while 3-way valves are used as a control element in a meter-in circuit pressure control system. In a bleed-off circuit, the system supply pressure from a hydraulic power pack does not remain constant, but changes according to their external load. In turn, the relief valve in the hydraulic power pack reacts accordingly showing complicated dynamic behavior, which makes an analytical study difficult. In order to resolve the problem, simple but accurate empirical dynamic models fer a bleed-off system were used in the course of formula derivation. As the result, selection criteria for two major control parameters of the driving signal is established and the basic strategy to suppress the unnecessary pressure fluctuation can be provided for a hydraulic pressure control system using a 2-way on/off solenoid valve.

고속전자밸브로 제어되는 전기.유압 서보시스템의 특성 개선에 관한 연구 (A Study on the Characteristics Improvement of Electro-Hydraulic Servo System Controlled by High Speed Solenoid Valve)

  • 박성환;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.288-294
    • /
    • 2001
  • In this study, a new PWM method considering the actuation delay of high speed solenoid valves is proposed to improve the response characteristics of electro hydraulic servo systems controlled by high speed solenoid valves. In addition, the decision method for the system gain, the basic period of PWM, and the sampling time is proposed, Since the conventional system controlled by high speed solenoid valves is too slow to apply this method, a high speed driving circuit(Quick-Drive) which enables rapid switching of the high speed solenoid valve at a high speed sampling mode is applied to realize this method. The experimental result shows that it is possible to achieve precision and quiet control without occurrence of limit cycle and wide range dead band.

  • PDF

2개 솔레노이드 구동방식별 CRDi용 인젝터의 유압 동특성 해석 (Analysis of Hydraulic Characteristics of Two Solenoid-driven Injectors for CRDi System)

  • 이진욱;이중협;김민식
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.140-147
    • /
    • 2011
  • The injection nozzle of an electro-hydraulic injector for the common rail Diesel fuel injection system is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the slenoid actuator was considered as a prime movers in high pressure Diesel injector. Namely a solenoid-driven Diesel injector with different driving current types, as a general method driven by solenoid coil energy, has been applied with a purpose to develop the analysis model of the solenoid actuator to predict the dynamics characteristics of the hydraulic component (injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the solenoid-driven injector, the circuit model has been developed as a unified approach to mechanical modeling in this study. As this analytic results, we know the suction force and first order time lag for driving force can be endowed in solenoid-driven injector in controlling the injection rate. Also it can predict that the input current wave exerted on solenoid coil is the dominant factor which affects on the initial needle behavior of solenoid-driven injector than the hydraulic force generated by the constant injection pressure.

양측식 리니어 펄스 모터의 2차원 유한요소해석 (2D Finite Element Analysis of Double-side LPM)

  • 이동주;이은웅;김성헌;김일중;김성종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.760-762
    • /
    • 2000
  • Hybrid type LPM can be widely applied in the precise position controlled devic because precise linear motion can be directly obtained by the simple control circuit without backlash in the rotary-type stepping motor. Also, LPM can increase the Position resolution, which was limited by mechanical manufacturing limit and characteristic of magnetic material. using micro-step drive method to decrease the noise and vibration further. Especially, Double-side LPM may be replaced the solenoid as the valve driving device without difficulty and give full play to control the valve accurately. Hence, In this paper, magnetic circuit of double-side LPM was confirmed and static thrust force curve according to the relative displacement between stator and mover, was analyzed by the two dimensional finite element method. From this results, we can suppose the excitation current to be controlled optimally.

  • PDF

비례제어밸브용 LPM의 3차원 유한요소 해석 (3D FEM Analysis of LPM for Proportional control valve)

  • 김성종;이은웅;김일중;김성헌;이동주;최재영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.620-622
    • /
    • 2000
  • Linear pulse motor have many advantages. (simple control circuit, high stiffness characteristics, etc.) So, it may replace the solenoid as the valve driving device without difficulty and give full play to control the valve accurately. In this paper, we will analyze the LPM for designed proportional control valve and will conform the complex magnetic circuits to be composed LF and TF path.

  • PDF