• Title/Summary/Keyword: Solder Bonding

Search Result 172, Processing Time 0.029 seconds

Study of a Low-Temperature Bonding Process for a Next-Generation Flexible Display Module Using Transverse Ultrasound (횡 초음파를 이용한 차세대 플렉시블 디스플레이 모듈 저온 접합 공정 연구)

  • Ji, Myeong-Gu;Song, Chun-Sam;Kim, Joo-Hyun;Kim, Jong-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.395-403
    • /
    • 2012
  • This is direct bonding many of the metal bumps between FPCB and HPCB substrate. By using an ultrasonic horn mounted on an ultrasonic bonding machine, it is possible to bond gold pads onto the FPCB and HPCB at room temperature without an adhesive like ACA or NCA and high heat and solder. This ultrasonic bonding technology minimizes damage to the material. The process conditions evaluated for obtaining a greater bonding strength than 0.6 kgf, which is commercially required, were 40 kHz of frequency; 0.6MPa of bonding pressure; and 0.5, 1.0, 1.5, and 2.0 s of bonding time. The peel off test was performed for evaluating bonding strength, which was found to be more than 0.80 kgf.

The optimization of processing condition of dissimilar material bonding using the 60 kHz ultrasonic transducer (60 kHz 초음파 공구 혼을 이용한 이종재료접합의 공정조건 최적화)

  • Lee, DongWook;Jeon, EuySick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.991-996
    • /
    • 2013
  • In this paper, the ultrasonic horn having the natural frequency with 60 [kHz] for the dissimilar material bonding of the glass and solder tried to be designed. The ultrasonic horn was designed through the relational formula including the aspect ratio of the input terminal and output terminal, length of the ultrasonic horn. The modal analysis was performed for the propriety analysis of the designed horn. The parameters and response was set through the basic experiment. The dissimilar material bonding strength analysis using the ultrasonic transducer was done. The optimal process parameters having maximum bonding strength was derived.

Active Metal Brazing Applied to Joining of ZrO2-Ti Alloy (ZrO2-Ti합금의 활성금속 브레이징)

  • Kee, Se-Ho;Park, Sang-Yoon;Jung, Jae-Pil;Kim, Won-Joong
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.38-43
    • /
    • 2012
  • In this study, active metal brazing methods for $ZrO_2$ and Ti alloy were discussed. To get a successful metal-ceramic bonding, various factors (melting temperature, corrosion, sag resistance, thermal expansion coefficient etc. of base materilas and filler metal) should be considered. Moreover, in order to clarify bonding between the metal and ceramic, the mechanism of the interfacial structure of the joints should be identified. The driving force for the formation of metal and ceramic interfaces is the reduction of the free energy which occurs when their contact becomes complete. Interfacial bonding depends on the material combinations and the bonding processes. This study describes the bonding between ceramic and metal in an active metal brazing.

Bonding Strength of Cu/SnAgCu Joint Measured with Thermal Degradation of OSP Surface Finish (OSP 표면처리의 열적 열화에 따른 Cu/SnAgCu 접합부의 접합강도)

  • Hong, Won-Sik;Jung, Jae-Seong;Oh, Chul-Min
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.47-53
    • /
    • 2012
  • Bonding strength of Sn-3.0Ag-0.5Cu solder joint due to degradation characteristic of OSP surface finish was investigated, compared with SnPb finish. The thickness variation and degradation mechanism of organic solderability preservative(OSP) coating were also analyzed with the number of reflow process. To analyze the degradation degree of solder joint strength, FR-4 PCB coated with OSP and SnPb were experienced preheat treatment as a function of reflow number from 1st to 6th pass, respectively. After 2012 chip resistors were soldered with Sn-3.0Ag-0.5Cu on the pre-heated PCB, the shear strength of solder joints was measured. The thickness of OSP increased with increase of the number of reflow pass by thermal degradation during the reflow process. It was also observed that the preservation effect of OSP decreased due to OSP degradation which led Cu pad oxidation. The mean shear strength of solder joints formed on the Cu pads finished with OSP and SnPb were 58.1 N and 62.2 N, respectively, through the pre-heating of 6 times. Although OSP was degraded with reflow process, the feasibility of its application was proven.

Thermal Transient Characteristics of Die Attach in High Power LED Package

  • Kim Hyun-Ho;Choi Sang-Hyun;Shin Sang-Hyun;Lee Young-Gi;Choi Seok-Moon;Oh Yong-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.331-338
    • /
    • 2005
  • The rapid advances in high power light sources and arrays as encountered in incandescent lamps have induced dramatic increases in die heat flux and power consumption at all levels of high power LED packaging. The lifetime of such devices and device arrays is determined by their temperature and thermal transients controlled by the powering and cooling, because they are usually operated under rough environmental conditions. The reliability of packaged electronics strongly depends on the die attach quality, because any void or a small delamination may cause instant temperature increase in the die, leading sooner or later to failure in the operation. Die attach materials have a key role in the thermal management of high power LED packages by providing the low thermal resistance between the heat generating LED chips and the heat dissipating heat slug. In this paper, thermal transient characteristics of die attach in high power LED package have been studied based on the thermal transient analysis using the evaluation of the structure function of the heat flow path. With high power LED packages fabricated by die attach materials such as Ag paste, solder paste and Au/Sn eutectic bonding, we have demonstrated characteristics such as cross-section analysis, shear test and visual inspection after shear test of die attach and how to detect die attach failures and to measure thermal resistance values of die attach in high power LED package. From the structure function oi the thermal transient characteristics, we could know the result that die attach quality of Au/Sn eutectic bonding presented the thermal resistance of about 3.5K/W. It was much better than those of Ag paste and solder paste presented the thermal resistance of about 11.5${\~}$14.2K/W and 4.4${\~}$4.6K/W, respectively.

  • PDF

Design of Dumbbell-type CPW Transmission Lines in Optoelectric Circuit PCBs for Improving Return Loss (광전회로 PCB에서 반사특성 개선을 위한 덤벨 형태의 CPW 전송선 설계)

  • Lee, Jong-Hyuk;Kim, Hwe-Kyung;Im, Young-Min;Jang, Seung-Ho;Kim, Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.408-416
    • /
    • 2010
  • A dumbbell-type CPW transmission-line structure has been proposed to improve the return loss of the transmission line between a driver IC and flip-chip-bonding VCSEL(Vertical Cavity Surface Emitting Laser) in a hybrid opto-electric circuit board(OECB). The proposed structure used a pair of dummy ground solder balls on the ground lines for flip-chip bonding of the VCSEL and designed the dumbbell-type CPW transmission line to improve reflection characteristics. The simulated results revealed that the return loss of the dumbbell-type CPW transmission line was 13-dB lower than the conventional CPW transmission line. A 4-dB improvement in the return loss was obtained using the dummy ground solder balls on the ground lines. The variation rate of the reflection characteristic with the variation of terminal impedances of the transmission line (at the output terminal of the driver IC and the input terminal of the VCSEL) is about ${\pm}2.5\;dB$.

Characterization of Low-temperature Conductive Films Bonded PV Modules and Its Field Test (저온 전도성 필름으로 본딩된 태양광 모듈의 특성 평가 및 실증 연구)

  • Baek, Su-Wung;Choi, Kwang-Il;Lee, Suk-Ho;Cheon, Chan-Hyuk;Hong, Seung-Min;Lee, Kil-Song;Shin, Hyun-Woo;Yang, Yeon-Won;Lim, Cheol-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 2014
  • In this paper, PV modules using a low-temperature conductive film(LT-CF) as a bonding material between a cell and a solder free ribbon were produced and chracterized, which is more environmental-friendly, cost effective and high efficient. Mainly, filed electrical performance of PV modules using three different types of bonding material; a convetional solder ribbon(SR), a LT-CF and a light-capturing Ribbon(LCR) were compared to comfirm the feasibility of LT-CF as a bonding material. The filed test were conducted for 3 months and results were discussed in terms of amount of output energy production and efficiency.

Thermo-Mechanical Reliability of Lead-Free Surface Mount Assemblies for Auto-Mobile Application (무연 솔더가 적용된 자동차 전장부품 접합부의 열적.기계적 신뢰성 평가)

  • Ha, Sang-Su;Kim, Jong-Woong;Chae, Jong-Hyuck;Moon, Won-Chul;Hong, Tae-Hwan;Yoo, Choong-Sik;Moon, Jeong-Hoon;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.24 no.6
    • /
    • pp.21-27
    • /
    • 2006
  • This study was focused on the evaluation of the thermo-mechanical board-level reliability of Pb-bearing and Pb-free surface mount assemblies. The composition of Pb-bearing solder was a typical Sn-37Pb and that of Pb-free solder used in this study was a representative Sn-3.0Ag-0.5Cu in mass %. Thermal shock test was chosen for the reliability evaluation of the solder joints. Typical $Cu_6Sn_5$ intermetallic compound (IMC) layer was formed between both solders and Cu lead frame at the as-reflowed state, while a layer of $Cu_3Sn$ was additionally formed between the $Cu_6Sn_5$ and Cu lead frame during the thermal shock testing. Thickness of the IMC layers increased with increasing thermal shock cycles, and this is very similar result with that of isothermal aging study of solder joints. Shear test of the multi layer ceramic capacitor(MLCC) joints was also performed to investigate the degradation of mechanical bonding strength of solder joints during the thermal shock testing. Failure mode of the joints after shear testing revealed that the degradation was mainly due to the excessive growth of the IMC layers during the thermal shock testing.

Evaluation of Pull Strengths and Fracture Modes of Solder Joino by Modified Ball Pull Testing with Protrusion Jaw (Protrusion Jaw가 적용된 볼 당김시험을 이용한 솔더 접합부의 강도와 파괴 메커니즘 분석에 관한 연구)

  • Kim Hyoung-Il;Han Sung-Won;Kim Jong-Min;Choi Myung-Ki;Shin Young-Eul
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.34-40
    • /
    • 2005
  • There have been numerous approaches to examine the bonding strengths of solder joints. However, despite the technical and practical limitations, the precedent test methods such as the ball shear and ball pull tests are being used in industrial applications. In this study, the optimum jaw pressure with the modified protrusion jaw was introduced in order to obtain higher successful rate f3r ball pull testing. Furthermore, the pull strengths and fracture modes of Sn-8Zn-3Bi, Sn-4Ag-0.7Cu, and Sn-37Pb eutectic solder after isothermal aging tests ($100^{\circ}C,\;150^{\circ}C$), were evaluated with the protrusion jaw. The pull strength-displacement hysteresis curves and fracture surfaces were carefully investigated to evaluate the correlation between the pull strengths and the fracture modes of each solder. In conclusion, it is verified that Au-Zn IMCs (Intermetallic Compounds) have a detrimental effect on the pull strengths and changed fracture modes of Sn-8Zn-3Bi solder. Meanwhile, the microstructure transformation influences the degradation of pull strengths of Sn-4Ag-0.7Cu and Sn-37Pb solders.

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.57-64
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology fur their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electrodes nickel, solder jetting, stud bumping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF