• Title/Summary/Keyword: Solar tracking

Search Result 449, Processing Time 0.03 seconds

Photo-sensorless dual-axis solar tracking system combined with IoT platform (IoT플랫폼이 결합된 광센서가 없는 태양광 추적 시스템)

  • Jung, Deok-Kyeom;Jeon, Jong-Woon;Park, Sung-Min;Chung, Gyo-Bum
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.664-671
    • /
    • 2018
  • Generally, conventional solar tracking systems employ irradiance sensors to track a sun position, which enables the system to generate maximum solar energy. The usage of irradiance sensors increases system costs and deteriorates the performance of systems from sensor malfunctions. In this paper, a new solar tracking system without irradiance sensors has been proposed in which the controller capable of controlling and monitoring remotely is based on Artik platform. The proposed system tracks the sun position by comparing the amount of currents from several solar panels, resulting in removing irradiance sensors. In order to verify the performance of the proposed solar tracking method, the 12[V]-20[W] prototype system is built and implemented. Since the proposed system has remote monitoring functions through the employment of Artik as the IoT platform, more advantages in installation, maintenance and expanded functionality can be obtained compared to the conventional solar tracking system.

Solar Tracking Performance using a Heliostat and Uniform Irradiation of LED Light for a Plant Factory (식물공장의 헬리오스탯을 이용한 태양광 추적성능 및 LED 균일광 조사)

  • Koo, Kyung-Wan;Kim, Tae-Jin;Kim, Youngshik;Ryu, Bong-Jo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1761-1767
    • /
    • 2015
  • This paper deals with the solar tracking performance using a small heliostat, the light reduction rate of the sun light, and the performance of uniform irradiation of LED light for a plant factory. A high precision encoder is attached to the heliostat to improve tracking accuracy. As a result, our heliostat-based solar tracking systems track efficiently the movement of the sun light in experimental tests. The reduction rate of the sun light in the plant factory is then measured by using an illumination sensor. The average reduction rate is 4.29%, which represents lower light reduction rates. In uniform irradiation tests of LED light, sixteen points are measured, and overall deviations of irradiation were within eight percents.

The Effect on Task Performance Ability of Project Method to Develop Solar Tracking Control System in Specialized High School (특성화고의 태양광 추적 제어 시스템 개발 프로젝트법이 학습자의 과제 수행 능력에 미치는 효과)

  • Han, Yu-Jin;Kim, Bang-Hee;Kim, Jinsoo
    • Journal of Engineering Education Research
    • /
    • v.17 no.1
    • /
    • pp.3-11
    • /
    • 2014
  • The purpose of this study was to verity the effect of project method on the task performance ability in development of a solar-tracking-control-system of specialized high school. In order to carry out this study, 2 classes of technical high school in Jeonbuk are chosen as experimental and control groups. The experimental group was taught by project method and the control group was taught by traditional instruction. Project method was designed by 4 stages-selection of goal, planning, implementation and evaluation. According to these stages, experimental group's students carried out the project that developing solar tracking control system in solar generation. The results of this study are as follows; the project method was more effective than the traditional instruction in planning ability for task performance and implementation ability, subordinates of task performance ability. However, information gathering ability and evaluation ability on task performance, others in subordinates, it is not clear that the project method is more effective.

Control of a Novel PV Tracking System Considering the Shadow Influence (그림자 영향을 고려한 새로운 태양광 추적시스템 제어)

  • Park, Ki-Tae;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.994-1002
    • /
    • 2008
  • In this paper a novel tracking system is described, regarding the influence of shadow between array, aimed at improving the efficiency of PV tracking system. Comparing with a building site versus capacity power, domestic solar powers have a limited siting. Therefore, each array interferes with the shadow of other arrays. The loss by influence of those shadow can be compensated for by means of control algorithm of the tracking device. The paper suggests a method controlling an altitude for length which is received the shadow influence of PV array. By using an azimuth of current solar position and the length between arrays, the controller of tracking device is able to calculate the length between actual arrays and make a comparison of the shadow length at a specific time with the length between arrays. When the shadow length is longer than the length between arrays, the controller of tracking device can adjust a position by compensating error altitude of the length between arrays at an altitude of current solar position. In the paper, we develop the control algorithm able to minimize the loss caused by the influence of shadow on the PV tracking system, and compared this with conventional output system. The controller has been tested in the laboratory with proposed algorithm and shows excellent performance.

Comments on the Computation of Sun Position for Sun Tracking System (태양추적장치를 위한 태양위치계산에서의 제언)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.6
    • /
    • pp.47-59
    • /
    • 2016
  • As the usage of sun tracking system in solar energy utilization facility increases, requirement of more accurate computation of sun position has also been increased. Accordingly, various algorithms to compute the sun position have been proposed in the literature and some of them insist that their algorithms guarantee less than 0.01 degree computational error. However, mostly, the true meaning of accuracy argued in their publication is not clearly explained. In addition to that, they do not clearly state under what condition the accuracy they proposed can be guaranteed. Such ambiguity may induce misunderstanding on the accuracy of the computed sun position and ultimately may make misguided notion on the actual sun tracking system's sun tracking accuracy. This work presents some comments related to the implementation of sun position computational algorithm for the sun tracking system. We first introduce the algorithms proposed in the literature. And then, from sun tracking system user's point of view, we explain the true meaning of accuracy of computed sun position. We also discuss how to select the proper algorithm for the actual implementation. We finally discuss how the input factors used in computation of sun position, like time, position etc, affect the computed sun position accuracy.

Modeling of Heliostat Sun Tracking Error Using Multilayered Neural Network Trained by the Extended Kalman Filter (확장칼만필터에 의하여 학습된 다층뉴럴네트워크를 이용한 헬리오스타트 태양추적오차의 모델링)

  • Lee, Sang-Eun;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.711-719
    • /
    • 2010
  • Heliostat, as a concentrator reflecting the incident solar energy to the receiver located at the tower, is the most important system in the tower-type solar thermal power plant, since it determines the efficiency and performance of solar thermal plower plant. Thus, a good sun tracking ability as well as its good optical property are required. In this paper, we propose a method to compensate the heliostat sun tracking error. We first model the sun tracking error, which could be measured using BCS (Beam Characterization System), by multilayered neural network. Then the extended Kalman filter was employed to train the neural network. Finally the model is used to compensate the sun tracking errors. Simulated result shows that the method proposed in this paper improve the heliostat sun tracking performance dramatically. It also shows that the training of neural network by the extended Kalman filter provides faster convergence property, more accurate estimation and higher measurement noise rejection ability compared with the other training methods like gradient descent method.

Development of Tracking Algorithm to Improve Accuracy of Altitude and Azimuth (태양 고도각 및 방위각 제어의 정확도 향상을 위한 추적 알고리즘 개발)

  • Back, Jung-Woo;Ko, Jae-Sub;Choi, Jung-Sik;Jang, Mi-Geum;Kang, Sung-Jun;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.219-221
    • /
    • 2009
  • This paper analyzes efficiency of photovoltaic(PV) tracking system using solar location algorithm(SLA). Solar location tracking system is needed for efficiently and intensively using PV system independent of environmental condition. PV tracking system of program method is presented a high tracking accuracy without the wrong operating in rapidly changed insolation by the clouds and atmospheric condition. Therefore, this paper analyzes efficiency of PV system using SLA for more correct position tracking of solar. Also, controlled altitude angle and azimuth angle by applied algorithm is compared with data of korea astronomy observatory. And this paper analyzes the tracking error and proves the validity of applied algorithm.

  • PDF

Development of Image sensor based automatic sun tracking system (이미지 센서기반의 태양광 자동 추적 시스템 개발)

  • Kim, Se Yoon;An, Seo Kil;Kim, Sung Ho
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • Recently, domestic energy environment is facing new challenges owing to the depletion of fossil fuel such as oil. Renewable energy resources including solar and wind energy are attracting more interests than ever before. However, solar power system is costly in comparison with the conventional power generation systems and also the energy density is low. Furthermore, large area is required in order to install solar power system. Generally, performance of solar power system is affected by weather conditions and alignment of sun and the solar cell modules. In this study, a new type of sun tracking system for solar power system is proposed. To verify the feasibility of the proposed system, actual implementation of prototype system and experiments are carried out.

Development of Rooftop-mounted Smart Solar Power Generation System (IT 융합기술을 이용한 스마트 태양광 발전 시스템 연구)

  • Woo, Deok Gun;Lee, Hyo Jae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.504-506
    • /
    • 2022
  • The existing rooftop solar power generation systems focus mainly on the development of a fixed system because of system error along with safety problem. Accordingly, it is intended to develop a rooftop mounted smart solar power generation system by adding a solar tracking system and a monitoring system to the existing fixed rooftop solar power generation technology. It plans to develop and commercialize 'Rooftop Mounted Smart Solar Power Generation System' by applying solar tracking system, safety diagnosis and response system, abnormal diagnosis and alarm system, and external device control and monitoring systems.

  • PDF

Designed of Intelligent Solar Tracking System using Fuzzy State-Space Partitioning Method (퍼지 상태 공간 분할 기법을 이용한 지능형 태양광 추적시스템 설계)

  • Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2072-2078
    • /
    • 2011
  • In photovoltaic(PV) system, for obtaining maximum efficiency of solar power systems, the solar tracking system must be controlled to match position of the sun. In this paper, we design the solar tracking system to track movement of the sun using CdS sensor modules and to determine direction of the sun under shadow of directions. In addition, for an intelligent computation in tracking of the sun, a fuzzy controller is allocated to space avaliable for splitting area of fuzzy part for the fuzzy input space(grid-type fuzzy partition) in which a fuzzy grid partition divides fuzzy rules bases. As well, a simple model of solar tracking system is designed by two-axis motor control systems and the 8-direction sensor module that can measure shadow from CdS sensor modules by matching of axis of CdS modules and PV panels. We demonstrate this systems is effective for fixed location and moving vessels and our fuzzy controller can track the satisfactorily.