• Title/Summary/Keyword: Solar grade silicon

Search Result 30, Processing Time 0.029 seconds

Electrochemical Reduction of SiO2 Granules to One-Dimensional Si Rods Using Ag-Si Eutectic Alloy

  • Lee, Han Ju;Seo, Won-Chul;Lim, Taeho
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.392-398
    • /
    • 2020
  • Producing solar grade silicon using an inexpensive method is a key factor in lowering silicon solar cell costs; the direct electrochemical reduction of SiO2 in molten salt is one of the more promising candidates for manufacturing this silicon. In this study, SiO2 granules were electrochemically reduced in molten CaCl2 (850℃) using Ag-Si eutectic droplets that catalyze electrochemical reduction and purify the Si product. When Ag is used as the working electrode, the Ag-Si eutectic mixture is formed naturally during SiO2 reduction. However, since the Ag-Si eutectic droplets are liquid at 850℃, they are easily lost during the reduction process. To minimize the loss of liquid Ag-Si eutectic droplets, a cylindrical graphite container working electrode was introduced and Ag was added separately to the working electrode along with the SiO2 granules. The graphite container working electrode successfully prevented the loss of the Ag-Si eutectic droplets during reduction. As a result, the Ag-Si eutectic droplets acted as stable catalysts for the electrochemical reduction of SiO2, thereby producing one-dimensional Si rods through a mechanism similar to that of vapor-liquid-solid growth.

The current status in the silicon crystal growth technology for solar cells (태양전지용 규소 결정 성장 기술 개발의 현황)

  • Lee, A-Young;Lee, Dong-Gue;Kim, Young-Kwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.47-53
    • /
    • 2014
  • Three kinds of crystalline silicon have been used for the solar cell grade. First of all, single crystalline silicon is the main subject to enhance the production yield. Most of the efforts are focused on the control of the melt-crystal interface shape affected by the crystal-crucible rotation rate. The main subject in the multi-crystalline silicon ingot is the contamination control. Faster Ar gas flow above the melt surface will lower the carbon contamination in the crystal. And also, twin boundary electrically inactive is found to be more effective than grain boundary for the improvement of the MCLT. In the case of mono-like silicon material, propagation of the multi-crystalline silicon growing from the inner side crucible is the problem lowering the portion of the single crystalline part at the center of the ingot. Crystal growing apparatus giving higher cooling rate at the bottom and lower cooling rate at the side crucible was suggested as the optimum solution obtaining higher quality of the mono-like silicon ingot. Proper application of the seeds at the bottom of the crucible would be one of the solutions.

Analysis with Directional Solidification in Silicon Melting Process (실리콘 용융 공정에서 방향성 응고에 관한 특성 분석)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1707-1710
    • /
    • 2014
  • This paper is the study for the directional solidification of the ingot through the thermal analysis simulation and structural change of casting furnace. The activation analysis of metal impurities were also detected the total number of 10 different metals, but the concentration distribution showed no significant positional deviations in the same position from the top to the bottom. With the results of thermal analysis simulation, the silicon as a whole has reached the melting temperature as the retention time 80 min. The best cooling conditions showed at the upper cooling temperature $1,400^{\circ}C$ and cooling time 60min. The fabricated wafers showed the superior etching result at the grain boundary than that of existing commercial wafers.

Silicon purification through acid leaching and unidirectional solidification (산처리와 일방향 응고를 이용한 실리콘 정제)

  • Eum, Jung-Hyun;Chang, Hyo-Sik;Kim, Hyung-Tae;Choi, Kyoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.232-236
    • /
    • 2008
  • Recently the shortage of silicon resources especially for poly-silicon of purity higher than 99.9999% leads to search for the more cheap and quick synthesizing routes for silicon feedstock. In order to solve this situation, we investigated the purification process of metallurgical grade (MG) silicon of purity around 99% by the acid leaching and following the unidirectional solidification. MG-Si lumps are pulverized with a planetary mill, and then leached with HCl/$HNO_3$/HF acid solution. As a result, the concentration of metal impurities including Al, Fe, Ca, Mn, etc. decreased dramatically. This process led to silicon content higher than 99.99%. The purified silicon powders were compacted and have been melted and uni-directionally solidified with heat exchange method (HEM) furnace. The properties of multicrystalline silicon ingots were specific resistance of $0.3{\Omega}{\cdot}cm$ and minority carrier life time (MCLT) of $3.8{\mu}{\cdot}sec$.

Effect of Saw-Damage Etching Conditions on Flexural Strength in Si Wafers for Silicon Solar Cells (태양전지용 실리콘 기판의 절삭손상 식각 조건에 의한 곡강도 변화)

  • Kang, Byung-Jun;Park, Sung-Eun;Lee, Seung-Hun;Kim, Hyun-Ho;Shin, Bong-Gul;Kwon, Soon-Woo;Byeon, Jai-Won;Yoon, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.617-622
    • /
    • 2010
  • We have studied methods to save Si source during the fabrication process of crystalline Si solar cells. One way is to use a thin silicon wafer substrate. As the thickness of the wafers is reduced, mechanical fractures of the substrate increase with the mechanical handling of the thin wafers. It is expected that the mechanical fractures lead to a dropping of yield in the solar cell process. In this study, the mechanical properties of 220-micrometer-solar grade Cz p-type monocrystalline Si wafers were investigated by varying saw-damage etching conditions in order to improve the flexural strength of ultra-thin monocrystalline Si solar cells. Potassium hydroxide (KOH) solution and tetramethyl ammonium hydroxide (TMAH) solution were used as etching solutions. Etching processes were operated with a varying of the ratio of KOH and TMAH solutions in different temperature conditions. After saw-damage etching, wafers were cleaned with a modified RCA cleaning method for ten minutes. Each sample was divided into 42 pieces using an automatic dicing saw machine. The surface morphologies were investigated by scanning electron microscopy and 3D optical microscopy. The thickness distribution was measured by micrometer. The strength distribution was measured with a 4-point-bending tester. As a result, TMAH solution at $90^{\circ}C$ showed the best performance for flexural strength.

The Characteristic Refinement of Poly-Si by Uni-directional Solidification with Thermal Gradient (일방향 응고시 온도 구배에 의한 다결정 실리콘 정련 특성)

  • Jang, Eunsu;Yu, Joon-Il;Park, Dongho;Moon, Byungmoon;Yu, Tae U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.59.2-59.2
    • /
    • 2010
  • 결정형 태양 전지의 보급화를 위하여 고순도 실리콘을 저렴하게 제조할 수 있는 기술 개발이 필요하다. 본 연구에서는 고순도 실리콘을 경제적으로 제조하기 위하여 대역 정제에 의한 일방향성 응고법을 이용한 정련 연구를 진행하였으며, 응고 속도와 고 액상의 온도 구배가 정련도에 미치는 영향을 분석 하였다. 본 실험에 사용된 일방향 응고장치는 실리콘 용탕이 장입된 도가니 하부의 열 교환기를 통한 냉각에 의해 용탕 하부에서 상부 방향으로의 일방향성 응고가 진행되며, 응고 진행시 용탕의 흔들림에 의한 정련능의 감소를 방지하기 위해 가열 영역이 이동하는 Stober 공정을 채택하였다. 가열 영역은 실리콘 용융을 위한 상부 가열 영역과 응고 진행시 응고부의 온도 제어를 위한 하부 가열 영역으로 구성되어 있으며, 두 가열 영역의 온도 제어를 통해 응고중인 실리콘의 고 액상의 온도 구배를 조절하였다. 일방향 응고에 의한 정련법에서 고 액상의 온도 구배가 증가할수록 2차 수지상의 발달이 감소하고, 주상정의 수지상 형태를 유지하게 되어 고 액 공존영역에서 액상 영역으로의 확산이 원활하게 이루어져 분배계수를 이용한 정련도가 좋아지게 되며, ICP 분석을 통해 온도 구배의 증가에 따라 정련능이 증가하는 양상을 확인 할 수 있었다. 고 액상의 온도 구배의 조절을 통한 공정 시간 대비 정련도의 향상을 통해 결정형 태양전지의 생산성의 증가를 통한 저가화를 이룰 수 있을 것이다.

  • PDF

Removal of Iron and Phosphorus from Metallurgical Grade Silicon by Melting with Ca and Aqua Regia Leaching (칼슘 첨가(添加)-용융(溶融) 금속급(金屬級) 실리콘의 왕수(王水) 침출(浸出)에 의한 철(鐵)과 인(憐)의 제거(除去))

  • SaKong, Seong-Dae;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.20 no.5
    • /
    • pp.34-39
    • /
    • 2011
  • Metallurgical grade silicon(MG-Si) was melted with Ca at 1500$^{\circ}C$ under Ar atmosphere. The sample was cooled at 10 $^{\circ}C$/min to room temperature and leached in aqua regia. In the present study, the effect of Ca addition and conditions of acid leaching on removal of Fe and P in MG-Si were investigated. CaSi$_2$ phase was formed at the grain boundary of MG-Si melting with Ca. Also FeSi$_2$ phase was precipitated in CaSi$_2$ phase. By the formation of CaSi$_2$ phase, 97% of Fe and 66 % of P were removed from Ca added MG-Si with the particle size of 600~850${\mu}m$ by aqua regia(more than 30%) leaching.

Characterization of carrier transport and trapping in semiconductor films during plasma processing

  • Nunomura, Shota;Sakata, Isao;Matsubara, Koji
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.391-391
    • /
    • 2016
  • The carrier transport is a key factor that determines the device performances of semiconductor devices such as solar cells and transistors [1]. Particularly, devices composed of in amorphous semiconductors, the transport is often restricted by carrier trapping, associated with various defects. So far, the trapping has been studied for as-grown films at room temperature; however it has not been studied during growth under plasma processing. Here, we demonstrate the detection of trapped carriers in hydrogenated amorphous silicon (a-Si:H) films during plasma processing, and discuss the carrier trapping and defect kinetics. Using an optically pump-probe technique, we detected the trapped carriers (electrons) in an a-Si:H films during growth by a hydrogen diluted silane discharge [2]. A device-grade intrinsic a-Si:H film growing on a glass substrate was illuminated with pump and probe light. The pump induced the photocurrent, whereas the pulsed probe induced an increment in the photocurrent. The photocurrent and its increment were separately measured using a lock-in technique. Because the increment in the photocurrent originates from emission of trapped carriers, and therefore the trapped carrier density was determined from this increment under the assumption of carrier generation and recombination dynamics [2]. We found that the trapped carrier density in device grade intrinsic a-Si:H was the order of 1e17 to 1e18 cm-3. It was highly dependent on the growth conditions, particularly on the growth temperature. At 473K, the trapped carrier density was minimized. Interestingly, the detected trapped carriers were homogeneously distributed in the direction of film growth, and they were decreased once the film growth was terminated by turning off the discharge.

  • PDF

Fabrication and property of silica nanospheres via rice-husk (왕겨를 통한 실리카 나노스페어의 제작과 특성)

  • Im, Yu-Bin;Kwk, Do-Hwan;Wahab, Rizwan;Lee, Hyun-Choel;Kim, Young-Soon;Yang, O-Bong;Shin, Hyung-Shik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.619-619
    • /
    • 2009
  • Recently, silica nanostructures are widely used in various applicationary areas such as chemical sensors, biosensors, nano-fillers, markers, catalysts, and as a substrate for quantum dots etc, because of their excellent physical, chemical and optical properties. Additionally, these days, semiconductor silica and silicon with high purity is a key challenge because of their metallurgical grade silicon (MG-Si) exhibit purity of about 99% produced by an arc discharge method with high cast. Tremendous efforts are being paid towards this direction to reduce the cast of high purity silicon for generation of photovoltaic power as a solar cell. In this direction, which contains a small amount of impurities, which can be further purified by acid leaching process. In this regard, initially the low cast rice-husk was cultivated from local rice field and washed well with high purity distilled water and were treated with acid leaching process (1:10 HCl and $H_2O$) to remove the atmospheric dirt and impurity. The acid treated rice-husk was again washed with distilled water and dried in an oven at $60^{\circ}C$. The dried rice-husk was further annealed at different temperatures (620 and $900^{\circ}C$) for the formation of silica nanospheres. The confirmation of silica was observed by the X-ray diffraction pattern and X-ray photoelectron spectroscopy. The morphology of obtained nanostructures were analyzed via Field-emission scanning electron microscope(FE-SEM) and Transmission electron microscopy(TEM) and it reveals that the size of each nanosphares is about 50-60nm. Using the Inductively coupled plasma mass spectrometry(ICP-MS), Silica was analyzed for the amount of impurities.

  • PDF

Research for refining processes to produce high-purity polycrystalline silicon from domestic quartzite mine (국내 규석광으로부터 고순도 실리콘 제조를 위한 정련 공정에 관한 연구)

  • Moon, Byung Moon;Kim, Gangjune;Koo, Hyun Jin;Park, Dong Ho;Yu, Tae U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.48-48
    • /
    • 2011
  • 2010년 약 19.5 GWp 의 규모로 성장한 태양광 시장의 주요 소재는 실리콘을 이용한 태양전지이며, 고성능 및 고효율 태양전지 시장이 급성장 하였다. 이러한 고품질 태양전지에 사용되는 주요 원료인 9N 급 폴리실리콘은 2008년 4월 $265/kg 까지 상승하였으나, 점차 하향안정세에 있으며, 급속한 가격 경쟁을 통해 당분간 장기공급가가 50$/kg 이하로 하락할 것으로 전망된다. 이러한 실리콘 제조기술 중 가장 많이 사용되는 기술은 Trichloro-silane (TCS) 또는 Mono-silane (MS)를 사용하는 기상법인 일명 Siemens 공정이다. 이러한 기상법의 경우 12N 이상의 초고품질 실리콘 제조가 가능하나, 대규모의 설비투자(1억원/폴리실리콘 1톤)와 높은 에너지(120 kWh/kg)가 요구된다. 이에 최근 기상법이 아닌 야금학적인 정련법에 대한 기술이 개발되고 있으며, 이는 금속 실리콘을 슬래그 처리, 편석 분리, 응고 급랭, 전자빔, 플라즈마 등을 이용하여 정련하는 공정을 말한다. 야금학적 정련법은 순도 면에서 기상법에 비하여 낮은 단점이 있음에도 불구하고, 여러 장점들로 인해 활발히 연구되며 점차 실용화 되고 있는 매우 유용한 기술이다. 야금학적 정련법의 주요 장점은 기상법에 비해 약 25% 정도의 설비 투자비로 가능하고, 금속 실리콘을 직접 사용하며, 에너지 payback이 짧다. 또한, 산 및 염화실렌을 사용하지 않으므로 환경 문제를 적게 야기하고, 생산설비의 확장성도 매우 높다. 본 연구에서는 국내 규석광을 이용하여 일련의 정련 공정을 거쳐 고순도SG(Solar Grade)급 실리콘을 제조하고자 하였다. 실리콘 용융 환원로를 개발하고 순도를 높이기 위해 슬래그정련법을 이용하였으며, 생산된 3N 급의 금속 실리콘을 비기상법정련 방식인 일방향 응고와 플라즈마 정련 및 전자기유도 용해법을 이용하여 고순도의 실리콘을 제조하였다. 본 연구에서는 상업생산을 개시한 외국의 E사와 비교하여 산침출공정을 거치지 않으므로 실리콘회수율 및 환경부하 절감의 장점을 갖고 있으며 최종 순도 실리콘 6N 이상, 보론 함유량 0.2 ppm 이하를 달성하였으며, 기존 기상법 대비 약 20%의 전력 감소와 약 13%의 금속실리콘 원료 절감 효과가 있었다. 저가/고순도 SG급실리콘의 제조기술 개발은 향후 세계 태양광 시장에 대한 경쟁력을 확보하고, 시장 점유율 상승에 기여할 수 있으며, 산업 확대를 통한 주변 산업으로의 파급 효과가 매우 클 것으로 예상된다.

  • PDF