• 제목/요약/키워드: Solar energy concentration

Search Result 233, Processing Time 0.028 seconds

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

A Study on the Dynamic Performance of a Solar Absorption Cooling System (태양열 흡수식 냉방 시스템의 동특성 연구)

  • Baek, N.C.;Lee, J.K.;Yang, Y.S.;Jeong, S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.81-87
    • /
    • 1998
  • Solar energy has been experiencing renewed interest because of the recent economical crisis in Korea. Absorption cooling is one of the promising solar energy utilization technologies. In this study the dynamic performance of a solar driven absorption cooling machine(SDACM) was numerically investigated. The simulated machine is a commercially available water/LiBr single effect absorption chillers driven by hot water from solar collectors. The present study has been directed to investigate the dynamic behavior of a solar cooling system including an absorption chiller, solar collector, a hot water storage tank, fan coil units, and the air-conditioned space. The operation of the system was simulated for 9 hours in varying operation conditions. The variation of temperature and concentration in the system components, and that of heat transfer rates in the system were obtained. It was also found that the room temperature was maintained near the desired value by controlling the mass flow rate of hot water.

  • PDF

Optical Properties and Structure of Black Cobalt Solar Selective Coatings (흑색 코발트 태양 선택흡수막의 광학적특성과 구조)

  • Lee, Kil-Don
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.48-56
    • /
    • 2011
  • Black cobalt solar selective coatings were prepared by thermal oxidation of electroplated cobalt metal on copper and nickel substrates. The optical properties and structure of the black cobalt selective coating for solar energy utilizations were characterized by glow discharge spectrometry (GDS), ultraviolet-visible-near infrared (UV-VIS-NIR) spectrometer, atom force microscopy(AFM) and X-ray photoelectron spectroscopy(XPS). The optical properties of optimum black cobalt selective coating prepared on copper substrate were a solar absorptance of 0.82 and a thermal emittance of 0.01. From the GDS depth profile analysis of these coatings, the concentration of cobalt particles near the interface was higher than at the surface, but oxygen concentration at the surface was higher than at the interface. These results suggest that the selective absorption was dominated by this chemical composition variation in the coating. The surface of this film exhibited morphology with root-mean-square(rms) roughness of about 144.3nm. XPS measurements data showed that several phases of Co coexist($Co_3O_4$,CoO) in the film.

Experimental Study on Drag Reduction Effect of PEO in Turbulent Flow (난류유동에서 PEO가 마찰저항 감소효과에 미치는 영향에 대한 실험적 연구)

  • Chun, W.G.;Kim, S.;Lee, B.A.;Choi, H.J.;Kim, C.A.
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.37-45
    • /
    • 1999
  • As polymer added in flow, the phenomenon of drag reduction effect was found by many experiments and studies. We divided polymer into three molecular weight($2{\times}10^5,\;4{\times}10^5,\;5{\times}10^5$) and into four concentration(1, 5, 10, 20wppm), then we measured the drag reduction effect in the range Reynolds Number with $30000{\sim}60000$. Finally we found that the most effect drag reduction was that molecular weight is $2{\times}10^5$ with 10wppm concentration. Then the concentration was according to PEO molecular weight, and in general DR increase according to Reynolds Number.

  • PDF

Influence of the Thickness and Doping Concentration in p- and n-Type Poly-Si Layers on the Efficiency of a Solar Cell Based on a Carbon Fiber

  • Yoon, Min-Seok;Shim, Young Bo;Han, Young-Geun
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.199-205
    • /
    • 2015
  • We investigated the effects of the thickness and doping concentration in p- and n-type poly-Si layers on the performance of a solar cell based on a carbon fiber in order to improve the energy conversion efficiency of the cell. The short-circuit current density and open-circuit voltage of the carbon fiber-based solar cell were significantly influenced by the thickness and doping concentration in the p- and n-type poly-Si layers. The solar cell efficiency was successfully enhanced to ~10.5%.

Development of High Efficiency Solar Power Generation with Two-axis Tracking Control (양축 추적제어에 의한 고효율 태양열 발전시스템의 개발)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1721-1726
    • /
    • 2011
  • Recently, interest in renewable energy is increased due to exhaustion of fossil fuel and environmental pollution all over the world, therefore the solar power generation using solar energy is many researched. The solar power generation is required solar tracking control and high concentration solar thermal collector because generation performance is depended on concentrator efficiency. This paper proposes high efficiency solar power generation with two-axis tracking control using dish-type solar thermal collector that has excellent thermal collector performance and tracking algorithm that can be accurately tracked solar position. This paper proves validity through analysis with accuracy of tracking algorithm and generating efficiency.

A Study on the Fixed-Concentrating Hybrid Panel using Reflector (반사판을 이용한 고정식 집속형 복합 Panel에 대한 연구)

  • Kim, Kiu-Jo;Kim, Wan-Tae;Lee, Tae-Ho;Yoo, Hung-Chul;Huh, Chang-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.1-8
    • /
    • 2001
  • The most effective methods for utilizing solar energy are to use the sunlight and solar thermal energy such as hybrid panel simultaneously and to use concentrator. From such a view point systems using various kinds of photovoltaic panels are constructed in the world. However, there has not been a hybrid panel with a concentrator. If the sunlight is concentrated on solar cell, cell conversion efficiency increases and the temperature of the solar cell s increases. As the temperature of the solar cells increases, the cell conversion efficiency gradually decreases. For maintaining the cell conversion efficiency constant, it is necessary to keep solar cell at low temperature. In this paper, after designing a concentration rate for concentrating, we propose a model for cooling the cell and for using wasted heat. And, we compare it with conventional panels after calculating the electrical and thermal efficiency, using the energy balance equation.

  • PDF

Development of Antifreeze Concentration Control device for Solar Heat Energy System (태양열에너지 시스템용 부동액 농도 제어 장치의 개발)

  • Seo, Choong-Kil;Won, Joung Wun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • The gases emitted from internal combustion engines using fossil fuels are causing many social problems, such as environmental pollution, global warming, and adverse health effects on the human body. In recent years, the demand for renewable energy has increased, and government policy support and research and development are also active. In the collecting part of a solar energy system, which is widely used at home, propylene glycol (PG) (anti-freeze), as a heating medium, is mixed with water at a fixed value of 50%, and the heat is transferred to the collecting part at subzero temperatures. On the other hand, when leakage occurs in the heat medium in the heat collecting part, supplemental water is supplied to the solar heat collecting part due to the characteristics of the solar heat system, so that the concentration of antifreeze in the replenishing water becomes low. As a result, the temperature of the solar heat collecting part is lowered resulting in a frost wave, which causes economic damage. The purpose of this study was to develop a device capable of controlling the antifreeze concentration automatically in response to a temperature drop to prevent freezing of the heat collecting part generated in the solar energy system. The electrical conductivity of the H2O component was larger than that of PG, and the resistance increased with decreasing temperature. The PG concentration control values of 40, 50, and 60% should be controlled through calibration with a PG concentration of 39.6, 50.7, and 60.1%.

$CO_2$ Gas Concentration Measurement and Modeling at a Classroom with Ventilation System of Middle School in Pusan (환기장치가 설치된 중학교 교실에서 탄산가스 농도변화 측정 및 모델링)

  • Kang, Tae-Wook
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.65-71
    • /
    • 2006
  • This study describes to analyze variation of carbon dioxide gas concentration by experimental and theoretical method according to the using patterns of ventilation system in a model classroom. Concentration of $CO_2$ gas varied by the occupancy and the ventilation systems are operating or not. More than 850 CMH ventilation system can maintain $CO_2$ gas concentration lower than 1,000 ppm along the class time and can be adopted the government guideline. Theoretical modeling of the concentration was performed at well-mixed ideal condition. Delays of concentration decay were shown at each case compared to actual.

An Experimental Study on the Characteristics of Flux Density Distributions in the Focal Region of a Solar Concentrator (태양열 집광기의 초점 지역에 형성된 플럭스 밀도 분포의 특성)

  • Hyun, S.T.;Kang, Y.H.;Yoon, H.G.;Yoo, C.K.;Kang, M.C.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.3
    • /
    • pp.31-37
    • /
    • 2002
  • This experimental study represents the results of an analysis on the characteristics of flux density distributions in the focal region of solar concentrator. The characteristics of flux density distributions are investigated to optimally design and position a cavity receiver. This deemed very useful to find and correct various errors associated with a dish concentrator. We estimated the flux density distribution on the target placed along with focal lengths from the dish vertex to experimentally determine the focal length. It is observed that the actual focal point exists when the focal length is 2.17 m. We also evaluated the position of flux centroid, and it was found that there were errors within 2 cm from the target center. The total integrated power of 2467 W was measured under focal flux distributions, which corresponds to the intercept rate of 85.8%. As a result of the percent power within radius, approximately 90% of the incident radiation is intercepted by about 0.06 m radius.