Browse > Article
http://dx.doi.org/10.5762/KAIS.2018.19.4.1

Development of Antifreeze Concentration Control device for Solar Heat Energy System  

Seo, Choong-Kil (Division Department of Automotive & Mechanical Engineering, Howon University)
Won, Joung Wun (Division Department of Automotive & Mechanical Engineering, Howon University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.19, no.4, 2018 , pp. 1-7 More about this Journal
Abstract
The gases emitted from internal combustion engines using fossil fuels are causing many social problems, such as environmental pollution, global warming, and adverse health effects on the human body. In recent years, the demand for renewable energy has increased, and government policy support and research and development are also active. In the collecting part of a solar energy system, which is widely used at home, propylene glycol (PG) (anti-freeze), as a heating medium, is mixed with water at a fixed value of 50%, and the heat is transferred to the collecting part at subzero temperatures. On the other hand, when leakage occurs in the heat medium in the heat collecting part, supplemental water is supplied to the solar heat collecting part due to the characteristics of the solar heat system, so that the concentration of antifreeze in the replenishing water becomes low. As a result, the temperature of the solar heat collecting part is lowered resulting in a frost wave, which causes economic damage. The purpose of this study was to develop a device capable of controlling the antifreeze concentration automatically in response to a temperature drop to prevent freezing of the heat collecting part generated in the solar energy system. The electrical conductivity of the H2O component was larger than that of PG, and the resistance increased with decreasing temperature. The PG concentration control values of 40, 50, and 60% should be controlled through calibration with a PG concentration of 39.6, 50.7, and 60.1%.
Keywords
Antifreeze; Energy; Geothermal; Solar heat; Propylene Glycol;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 C. K. Seo, "Research on Improvement of CH4 Reduction Performance of NGOC for CNG Bus", Journal of the Korea Academia-Industrial cooperation Society, vol. 18, no. 5. pp. 708-715, 2017. DOI: http://doi.org/10.5762/KAIS.2017.18.5.708   DOI
2 C. K. Seo, J. W. "Flow and Electricity Power Characteristics of Hydraulic Turbine for Power Generation with Geothermal Energy System", Won, Journal of the Korean Society for Power System Engineering, vol. 19, no. 1, pp. 24-30, 2015. DOI: https://doi.org/10.9726/kspse.2015.19.1.024
3 M. Bravi, R. Basosi, "Environmental Impact of Electricity from selected Geothermal Power Plants in Italy", Journal of Cleaner Production, vol. 66, no. 2, pp. 301-308. 2014. DOI: https://doi.org/10.1016/j.jclepro.2013.11.015   DOI
4 H. Hofmann, S. Weides, T. Babadagli, G. Zimmermann, I. Moeck, J. Majorowicz, M. Unsworth, "Potential for Enhanced Geothermal System in Alberta, Canada", Energy, vol. 69, no. 6, pp. 578-591. 2014. DOI: https://doi.org/10.1016/j.energy.2014.03.053   DOI
5 J. L. Fannou, C. Rousseau, L. Lamarche, K. Stanislaw, "Experimental analysis of a direct expansion geothermal heat pump in heating mode" Energy and Buildin", Energy and Buildings, vol. 75, no. 4, pp. 290-300, 2014. DOI: https://doi.org/10.1016/j.enbuild.2014.02.026   DOI
6 J. S. Kim, C. K. Lee, "A Study of the Influence of Condensing Water Temperature on Low Temperature Geothermal Power Generation", Korea Society of Geothermal Energy Engineers, vol. 3, no. 7, pp. 17-23, 2017.
7 K. W. Choi, D. H. Ahn, J. H. Boo, "Influence of temperature gradient induced by concentrated solar thermal energy on the power generation performance of a thermoelectric module", Journal of the Korea Academia-Industrial cooperation Society, vol. 18, no. 10. pp. 777-784, 2017. DOI: http://doi.org/10.5762/KAIS.2017.18.10.777   DOI
8 S. Y. Lim, S. Y. Park, S. H. Yoo, "The Economic Effects of the New and Renewable Energies Sector", Journal of Energy Engineering, vol. 23, no. 4, pp. 31-40, 2014. DOI: https://doi.org/10.5855/ENERGY.2014.23.4.031   DOI
9 M. S. Hye, S. S. Jik, "A Fundamental Study of BIPV System Functioned as Sollar Collector for Buildings Application", Journal of the Korean Solar Energy Society, vol. 27, no. 1, pp. 91-98, 2007.
10 B. N. Choon, L. J. Kook, Y. C. Kyun, Y. E. Sang, Y. J. Ho, "A Study on the Operating Characteristics of Solar Collecting System in Solar Thermal/Geothermal Hybrid System with Facade Integrated Solar Collector", Journal of the Korean Solar Energy Society, vol. 30, no. 5, pp. 69-76, 2010.
11 J. H. Lee, H. Oh, J. S. Kim, D. W. Kim, W. S. Park, "Development of geothermal exchanger for efficiency improvement of solar cell module", Journal of the Korea Academia-Industrial cooperation Society, vol. 16, no. 4, pp. 2966-2970, 2015. DOI: http://doi.org/10.5762/KAIS.2015.16.4.2966   DOI
12 http://www.core21.co.kr.
13 http://woosungchemical.com.