Browse > Article
http://dx.doi.org/10.7836/kses.2011.31.4.048

Optical Properties and Structure of Black Cobalt Solar Selective Coatings  

Lee, Kil-Don (Dept. of Electrophysics, Kyonggi University)
Publication Information
Journal of the Korean Solar Energy Society / v.31, no.4, 2011 , pp. 48-56 More about this Journal
Abstract
Black cobalt solar selective coatings were prepared by thermal oxidation of electroplated cobalt metal on copper and nickel substrates. The optical properties and structure of the black cobalt selective coating for solar energy utilizations were characterized by glow discharge spectrometry (GDS), ultraviolet-visible-near infrared (UV-VIS-NIR) spectrometer, atom force microscopy(AFM) and X-ray photoelectron spectroscopy(XPS). The optical properties of optimum black cobalt selective coating prepared on copper substrate were a solar absorptance of 0.82 and a thermal emittance of 0.01. From the GDS depth profile analysis of these coatings, the concentration of cobalt particles near the interface was higher than at the surface, but oxygen concentration at the surface was higher than at the interface. These results suggest that the selective absorption was dominated by this chemical composition variation in the coating. The surface of this film exhibited morphology with root-mean-square(rms) roughness of about 144.3nm. XPS measurements data showed that several phases of Co coexist($Co_3O_4$,CoO) in the film.
Keywords
Black cobalt solar selective coatings; Thermal oxidation; Optical properties; Selective absorption;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Portinha, V. Teixeira, A. Monteiro, M. F. Costa, N. Lima, J. Martins and D. Martinez, Surf. Interface Anal. 35, 72 (2003)   DOI   ScienceOn
2 C. M. Lampert and J. Washburn, Sol. Energy Mater. 1, 81 (1979).   DOI
3 J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, 2nd ed. (Wiley-Interscience, New York, 1991)
4 G. Zajac, G. B. Smith and A. Ignatiev, J. Appl. Phys. 51, 5544 (1980).   DOI   ScienceOn
5 A. R. Shashikala, A. K. Sharma, D. R. Bhandari, Sol. Energy Mater. & Sol. Cells 91, 629 (2007).   DOI   ScienceOn
6 D. Bacon and A. Ignatiev, Sol. Energy Mater. 9, 3 (1983)   DOI   ScienceOn
7 G. B. Smith, G. Zajac, A. Ignatiev and J. W. Rabalais, Sur. Sci. 114, 614 (1981).
8 T. Bostrm, J. Jensen, S. Valizadeh, G. Westin and E. Wackelgard, Sol. Energy Mater. & Sol. Cells 92, 1177 (2008).   DOI   ScienceOn
9 T. K. Bostrom, E. Wackelgard, and G. Westin, Sol. Energy Mater. & Sol. Cells 89, 197 (2005).   DOI   ScienceOn
10 A. Avila, E. Barrera, L. Huerta and S. Muhl, Sol. Energy Mater. & Sol. Cells 82, 269 (2004)   DOI
11 K. D. Lee, Korean Phy. Soc. 49, 187 (2006).
12 K. D. Lee, Korean Phy. Soc. 51, 135 (2007)   DOI   ScienceOn
13 G. B. Smith and A. Ignatiev, Sol.Energy Mater. 2, 461 (1980)   DOI   ScienceOn
14 P. Oelhafen and A. Schuler, Sol. Energy 79, 110 (2005).   DOI   ScienceOn
15 M. R. Durry, T. Theocharous, N. Harrison, N. F. Moira Hilton, Optics Communications 270, 262 (2007).   DOI   ScienceOn
16 M. R. Bayati, M. H. Shariat and K. Janghorban, Renewable Energy 30, 2163 (2005).   DOI   ScienceOn
17 K. D. Lee, W. C. Jung and J. H. Kim, Sol. Energy Mater. & Sol. Cells 63, 125 (2000).   DOI   ScienceOn
18 Q. C. Zhang, M. S. Hadavi, K. D. Lee, and Y. G. shen, J. Phys. D: Appl. Phys. 36, 723 (2003).   DOI   ScienceOn
19 V. Teixeira, E. Souse, M. F. Costa, C. Nunes, L. Rosa, M. J. Carvalho, M. Collares-Pereira, E. Roman and J. Gago, Vacuum 64, 299 (2002).   DOI
20 O. P. Agnihotri and B. K. Gupta, Solar Selective Surfaces, 1st ed. (Wiley-Interscience Publication, New York, 1981), Chapter. 5.
21 H. Tabor, Bull. Res. Council Israel 5A, 119(1956).
22 G. B. Smith, A. Ignatiev and G. Zajac, J. Appl. Phys. 51, 4186(1980)   DOI   ScienceOn