• Title/Summary/Keyword: Solar Position

Search Result 277, Processing Time 0.02 seconds

DEVELOPMENT OF AN AUTOMATIC OBSERVATION SYSTEM FOR KOREAN e-CALLISTO STATION (한국 e-CALLISTO 관측소 자동 관측 시스템 개발)

  • PARK, JONGYEOB;CHOI, SEONGHWAN;BONG, SU-CHAN;KWON, YONGJUN;BAEK, JI-HYE;JANG, BI-HO;CHO, KYUNG-SUK;MOON, YONG-JAE;Monstein, Christian
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.3
    • /
    • pp.811-819
    • /
    • 2015
  • The e-CALLISTO is a network of CALLISTO (Compact Astronomical Low-frequency, Low-cost Instrument for Spectroscopy in Transportable Observatories) spectrometers which detect solar radio bursts 24 hours a day in frequency range 45-870 MHz. The number of channels per spectrum is 200 and the time resolution of whole spectrum is 0.25 second. The Korean e-CALLISTO station was developed by Korea Astronomy and Space Science Institute (KASI) collaborating with Swiss Federal Institute of Technology Zurich (ETH Zurich) since 2007. In this paper, we report replacement of the tracking mount and development of the control program using Visual C++/MFC. The program can make the tracking mount track the Sun and schedule CALLISTO to start and to finish its observation automatically using the Solar Position Algorithm (SPA). Daily tracking errors (RMSE) are 0.0028 degree in azimuthal axis and 0.0019 degree in elevational axis between 2014 January and 2015 July. We expect that the program can save time and labor to make the observations of solar activity for space weather monitoring, and improve CALLISTO data quality due to the stable and precise tracking methods.

Identification of backside solar proton events

  • Park, Jin-Hye;Moon, Yong-Jae;Lee, Dong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.34.1-34.1
    • /
    • 2010
  • Solar proton events, whose fluxes are larger than 10 particles cm-2 sec-1 ster-1 for >10 MeV protons, have been observed since 1976. NOAA proton event list from 1997 to 2006 shows that most of the events are related to both flares and CMEs but a few fraction of events (5/93) are only related with CMEs. In this study, we carefully identified the sources of these events. For this, we used LASCO CME catalog and SOHO MDI data. First, we examined the directions of CMEs related with the events and the CMEs are found to eject from the western hemisphere. Second, we searched a major active region in the front solar disk for several days before the proton events occurred by taking into account two facts: (1) The location of the active region is consistent with the position angle of a given CME and (2) there were several flares in the active region or the active region is the largest among several candidates. As a result, we were able to determine active regions which are likely to produce proton events without ambiguity as well as their longitudes at the time of proton events by considering solar rotation rate, $13.2^{\circ}$ per day. From this study, we found that the longitudes of five active regions are all between $90^{\circ}W$ and $120^{\circ}W$. When the flare peak time is assume to be the CME event time, we confirmed that the dependence of their rise times (proton peak time - flare peak time) on longitude are consistent with the previous empirical formula. These results imply that five events should be also associated with flares which were not observed because they occurred from back-side.

  • PDF

A CONSTRUCTION OF THE REAL TIME MONITORING SYSTEM OF THE SOLAR RADIO DISTURBANCE 1. THE CONTROL SYSTEM OF THE RADIO TELESCOPE (태양전파 교란 실시간 모니터링 시스템 구축 1. 전파망원경 구동시스템)

  • 윤요나;이충욱;차상목;김용기
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.121-128
    • /
    • 2004
  • As the first step of the real time monitoring system of the solar radio disturbance, we constructed the control system of the solar radio telescope. An 1.8m antenna built by Korean Astronomy Observatory has been used, and the observed radio flux is transformed to the digital signal by the powermeter. We have also developed a computer program CBNUART in order to control the telescope system and the powermeter. As the sun rises, the telescope begins to observe the sun, and ends the observation automatically at sunset. The CBNUART enables the telescope automatically to go to the position of the sunrise for the beginning the observation and come back to the setposition after the ending the observation at the sunset. An active tracking routine is adopted in order to improve the tracking accuracy of the control system, and we used an optical telescope equipped in front of the antenna for control test. The tracking test shows that our control system can track with the accuracy of arc seconds, and the 50 minute pointing test shows that the pointing accuracy of right ascension and declination are 1.12 and 0.08 arc minutes respectively.

Case Study on 12kW Building Integrated Photovoltaic System (12kW급 건물일체형 태양광발전시스템 사례분석)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;So, Jung-Hoon;Yu, Gwon-Jong;Kim, Jun-Tae;Lee, Kil-Song
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • We intend to describe a 12kW building-integrated photovoltaic system which was applied into the south wall of a new building. This study showed the results that were appeared from describing the PV module manufacture and installation process, and performing generation performance analysis of BIPV system. From the result we confirmed that the generation performance of the BIPV system was changed by season. The performance ratio(PR) was about 83.6% in winter and it means that performance of this BIPV system was so good in that season. On the other hand, the PR in summer was about 75.0% dropped about 8%. It was believed that the change was influenced by the reduction of solar radiation irradiated into the PV modules by installation position and rainy spell in summer. And we also confirmed that low irradiation condition is cause of the additional loss in the total PV system. In this case, the efficiency ratio of PCS drops significantly at low input loads and the average conversion efficiency of PCS in summer was 76.4% decreased about 10% from 86% in winter.

A Study on Quadcopter Consisting of Dual Li-Po Battery Charging by Solar Cell in the Engineering Education Completed a Senier Project Work at the University (공학교육 이수체계에서 대학 졸업 작품용 이중 Li-Po 전원 사용 태양전지 충전 쿼드콥터 구성에 관한 연구)

  • Yoon, Seong-Geun;Kim, Kyung-Bin;Chang, Eun-Young
    • Journal of Practical Engineering Education
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Depending on the college graduation project and graduation thesis regulations for the certification and graduation requirements, the quadcopter acting as a Li-Po battery that charges by solar energy are proposed a design method and improvements in theory. Quadcopter posture is balanced and confirmed by the position sensor, through a PID (Proportional Integral Differential) control. Battery switching circuit is composed of two Li-Po battery. Driving the quadcopter as one battery, and does not use other battery is charged by solar energy. A battery switching circuit is fabricated in a manner that uses two types of relays. Even if completely not charged to the battery is being driven a certain switch by the battery charging voltage from time to time, it proposes a method for increasing the endurance time and range.

Methodology for the Observations of Stellar Occultations by Small Bodies of the Solar System

  • Salazar-Manzano, Luis E.;Quintero, Edwin A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • The observation of stellar occultations constitutes one of the most important techniques for determining the dimensions and establishing the physical parameters of small Solar System bodies. The most substantial calculations are obtained from multiple observations of the same event, which turns the observation of stellar occultations into highly collaborative work and groups teams of observers through international networks. The above situation also requires the participation of both professional and amateur observers in these collaborative networks. With the aim of promoting the participation of professional and amateur groups in the collaborative observation of stellar occultations, we present the methodology developed by the Astronomical Observatory of the Technological University of Pereira (OAUTP) for the observations of occultations due small Solar System bodies. We expose the three fundamental phases of the process: the plan to make observations, the capture of the events, and the treatment of the data. We apply our methodology using a fixed station and a mobile station to observe stellar occultations due to MBAs (354) Eleonora (61) Danae (15112) Arlenewolfe (3915) Fukushima (61788) 2000 QP181 (425) Cornelia (257) Silesia (386) Siegena and (41) Daphne, and due to TNOs 1998BU48 and (529823) 2010 PP81. The positive detections for the objects (257) Silesia (386) Siegena and (41) Daphne allow us to derive lower limits in the diameter of the MBAs of 63.1 km, 166.2 km and 158.7 km and offsets in the astrometric position (Δαc cos��c, Δ��c) of 622.30 ± 0.83, 15.23 ± 9.88 mas, 586.06 ± 1.68, 43.03 ± 13.88 mas and -413.44 ± 9.42, 234.05 ± 19.12 mas, respectively.

A Experiment Study on Performance Evaluation of Solar Heat Gain Coefficient in Glazing with Shading Devices (실내 차양장치 결합형 창호의 태양열 취득률 평가에 대한 실험적 연구)

  • Kim, Tae-Jung;Kang, Jae-Sik;Park, Jun-Seok
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.89-99
    • /
    • 2014
  • The determination of the solar and thermal performance of fenestration is required for the evaluation of fenestration energy performance, estimating building load. Presently, there exist several methods for determining the thermal transmission(U-value) and solar heat gain coefficient (SHGC) of fenestration system. These method are commonly grouped under calculation or experimental methods. While U-value testing and calculation methods have been long established, SHGC has been evaluated only by the method of calculation under the lack of any established testing method. However, it is difficult to assess the exact SHGC for various types of fenestration with sun-shading or other solar control systems. The purpose of this study was to evaluate the effect of interior venetian blind and roll screen on the SHGC of glazing system. SHGC has been evaluated by the KS L 9107 test method and exiting calculation method for precise comparison of the energy performances of various shading devices. In this research, the test sample consists of three different types of double glazing unit with venetian blind and roll screen. Slat angles of venetian blind were changed to $-45^{\circ}$, $0^{\circ}$, and$-45^{\circ}$. For the roll screen, measurements were taken with the roll screen in the closed position. In result, the venetian blind reduced SHGC by 21.2~28.4% at $45^{\circ}$, when compared to the double glazing unit. The roll screen reduced SHGC by 34.4~41.7% at closed. The differences between the measured and calculated SHGC were found to range between 0.001(0.2%) and 0.047(11.1%) for all test cases. For the cases of venetian blind $-45^{\circ}$, $0^{\circ}$ and $45^{\circ}$, the deviation ratio were 3.6~9.8%, 1.1~2.6%, 4.2~11.1%, respectively. For the case of roll screen, the deviation ratio were 4.1~5.7%.

Studies of Parallelism and Performance Enhancements of Computing View Factor for Satellite Thermal Analysis (인공위성 열해석을 위한 복사형상계수 계산기법의 병렬화 및 성능향상 기법 연구)

  • Kim, Min-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1079-1088
    • /
    • 2015
  • Parallelism and performance enhancement of calculating view factors in KSDS developed by KARI is introduced in this paper. View factor is an essential parameters of radiation thermal analysis for a spacecraft, and the amount of computation of them is not negligible. Especially, independent integration of view factors at each position of the orbit because the relative displace between solar panel and main body of a satellite varies with the position on the orbit. This paper introduces a range of parallelism of computing view factor and their performance, detection of obstructions by spatial search algorithm based on KD-Tree, and the reduction of the calculation of view factors of a satellite with relative motion between solar panel and main body, called updating fractional view factor matrix, for satellite thermal analysis.

Environment Simulation and Effect Estimation of Space Radiation for COMS Communication Payload (통신해양기상위성 통신 탑재체의 우주 방사선 환경 모사 및 영향 추정)

  • Kim, Seong-Jun;U, Hyeong-Je;Seon, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.76-83
    • /
    • 2006
  • Space radiation environment for COMS is simulated by NASA AP8/AE8, JPL91 and NRL CREME models, respectively for trapped particle, solar proton and cosmic-ray. The radiation effects on electronic devices in communication payload are also estimated by using simulation results. Dose-depth curve and LET spectrum are calculated for estimating total ionizing dose(TID) effect and single event effect(SEE) respectively. Spherical sector method is applied to dose estimation at each position in the units of communication payload to consider shielding effect of platform and housing. Total ionizing dose at each position varies by 8 times through shielding effect under the same external space radiation environment.

A Basic Study on Application of Small Wind Power System Combined Ventilator in Super High-rise Apartment (1) (초고층 공동주택의 배기겸용 소형풍력발전 적용을 위한 기초연구(1))

  • Park, Jung-Ha;Kim, Jin-Woo;Jang, Ho-Jin;Park, Jin-Chul;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.126-132
    • /
    • 2011
  • Recently, high-rise apartment is being briskly built but there are problems such as lack of ventilation, stack effect and much energy consumption. Therefore It is recommended to develop a Small Wind Power System Combined Ventilator as a solution to solve these problems. The purpose of this study is to provide basis for Small Wind Power System Combined Ventilator in super high-rise apartment. This study conducted CFD simulation (Star-CCM) according to the shape of structures, building height and distance of two structures to identify the effect of wind speed increase when the structure is installed. As a result, pyramidal type was best suited for increase of wind speed. The best place was the front of the roof to main wind direction, and the best building height was 200m rather than 300m. If two or more small wind turbines combined ventilator are installed closely, vertical position to main wind direction is recommended. Horizontal position must necessarily be avoided, but height difference between two blades more than 3m showed good performance.