• Title/Summary/Keyword: Solar Photovoltaics

Search Result 172, Processing Time 0.039 seconds

A Novel Simple Method to Abstract the Entire Parameters of the Solar Cell

  • Park, Minwon;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.86-91
    • /
    • 2004
  • PV power generation, which directly converts solar radiation into electricity, contains numerous significant advantages. It is inexhaustible and pollution-free, silent, contains no rotating parts, and has size-independent electricity conversion efficiency. The positive environmental effect of photovoltaics is that it replaces the more polluting methods of electricity generation or that it provides electricity where none was available before. This paper highlights a novel simple method to abstract the entire parameters of the solar cell. In development, design and operation of PV power generation systems, a technique for constructing V-I curves under different levels of solar irradiance and cell temperature conditions using basic characteristic values of the PV module is required. Everyone who has performed manual acquisition and analysis of solar cell I versus V data would agree that the job is tedious and time-consuming. A better alternative is to use an automated curve tracer to print out the I versus V curves and compute the four major parameters; $V_{oc}$, $I_{sc}$, FF, and . Generally, the V-I curve tracer indicates only the commonly used solar cell parameters. However, with the conventional V-I curve tracer it is almost impossible to abstract the more detailed parameters of the solar cell; A, $R_{s}$ and $R_{sh}$ , which satisfies the user, who aims at the analysis of the development of the PV power generation system, that being advanced simulation. In this paper, the proposed method provides us with satisfactory results to enable us to abstract the detailed parameters of the solar cell; A, $R_s$ and $R_{sh}$.>.

A Study on the Integrated Prefab Building Materials Depending on the Cooling Type of PV Mocdule Backside (태양전지모듈 후면의 냉각조건에 따른 조립식 건축자재와 일체화에 관한 연구)

  • Yi So-Mi;Lee Yong-Ho;Hong Sung-Min
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.9-15
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. So, the purpose of this research is to integrated prefab building materials depending on the cooling type of PV modules. It is concluded that the prediction of BIPV system's performance should be based on the more accurate PV module temperature. From the basis of these results on the correlation of temperature and irradiation were obtained.

  • PDF

Demonstration Study of 10kW Poly Metal Panel integrated PV Module (10kW급 지붕재용 태양전지모듈 실증연구)

  • Yi, So-Mi;Noh, Ji-Hee;Joo, Man-Sic
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.246-249
    • /
    • 2007
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are sol id state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. So, this paper describes a design and performance test of the 10kW poly metal pv module(pmpp) system. It is concluded that the prediction of BIPV system's performance should be based on the more accurate PV module installation.

  • PDF

A Study on the Development of Roof Integrated PV Module (Focused on the Prefab Building System) (지붕재 일체형 태양전지 모듈의 개발에 따른 내구성 평가 (조립식 건축시스템을 중심으로))

  • Yi, So-Mi;Noh, Ji-Hee;Lee, Eung-Jik
    • KIEAE Journal
    • /
    • v.6 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre- manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. Architecture considerations for the integration of PV module to building envelope such as building structure, construction type, safety, regulation, maintenance etc. have been carefully refelected from the early stage of BIPV module design. Trial product of BIPV module are manufactured and sample construction details for demonstration building are purposed. Therefore, this paper intends to advanced its practical use by proposing how to get integrated PV system which can be applied to prefab building material, and how to apply it.

A Study on the Integrated Prefab Building Materials Depending on the Cooling Type of PV Module Backside (태양전지모듈 후면의 냉각조건에 따른 조립식 건축자재와 일체화에 관한 연구)

  • Yi, So-Mi;Lee, Yong-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.138-141
    • /
    • 2006
  • The application of photovoltaics into building as integrated building components has been paid more attention worldwide. Photovoltaics or solar electric modules are solid state devices, directly converting solar radiation into electricity; the process does not require fuel and any moving parts, and produce no pollutants. And the prefab building method is very effective because the pre-manufactured building components is simply assembled to making up buildings in the construction fields especially the sandwich panel. So, the purpose of this research is to integrated prefab building materials depending on the cooling type of PV modules. It is concluded that the prediction of BIPV system's performance should be based on the more accurate PV module temperature. From the basis of these results on the correlation of temperature and irradiation were obtained.

  • PDF

Solar Photovoltaics Technology: No longer an Outlier

  • Kazmerski, Lawrence L.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.70-70
    • /
    • 2011
  • The prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is beyond a tipping point in the complex worldwide energy outlook. Truly, a revolution in both the technological advancements of solar PV and the deployment of this energy technology is underway; PV is no longer an outlier. The birth of modern photovoltaics (PV) traces only to the mid-1950s, with the Bell Telephone Laboratories' development of an efficient, single-crystal Si solar cell. Since then, Si has dominated the technology and the markets, from space through terrestrial applications. Recently, some significant shift toward technology diversity have taken place. Some focus of this presentation will be directed toward PV R&D and technology advances, with indications of the limitations and relative strengths of crystalline (Si and GaAs) and thin-film (a-Si:H, Si, Cu(In,Ga)(Se,S)2, CdTe). Recent advances, contributions, industry growth, and technological pathways for transformational now and near-term technologies (Si and primarily thin films) and status and forecasts for next-generation PV (nanotechnologies and non-conventional and "new-physics" approaches) are evaluated. The need for R&D accelerating the now and imminent (evolutionary) technologies balanced with work in mid-term (disruptive) approaches is highlighted. Moreover, technology progress and ownership for next generation solar PV mandates a balanced investment in research on longer-term (the revolution needs revolutionary approaches to sustain itself) technologies (quantum dots, multi-multijunctions, intermediate-band concepts, nanotubes, bio-inspired, thermophotonics, ${\ldots}$ and solar hydrogen) having high-risk, but extremely high performance and cost returns for our next generations of energy consumers. This presentation provides insights to the reasons for PV technology emergence, how these technologies have to be developed (an appreciation of the history of solar PV)-and where we can expect to be by this mid-21st century.

  • PDF

Evaluation of Solar Cell Properties of Poly-Si Thin Film Fabricated with Novel Process Conditions for Solid Phase Crystallization (고상 결정화법을 위한 새로운 공정조건으로 제작된 다결정 Si 박막의 태양전지 특성 평가)

  • Kweon, Soon-Yong;Jeong, Ji-Hyun;Tao, Yuguo;Varlamov, Sergey
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.766-772
    • /
    • 2011
  • Amorphous Si (a-Si) thin films of $p^+/p^-/n^+$ were deposited on $Si_3N_4$/glass substrate by using a plasma enhanced chemical vapor deposition (PECVD) method. These films were annealed at various temperatures and for various times by using a rapid thermal process (RTP) equipment. This step was added before the main thermal treatment to make the nuclei in the a-Si thin film for reducing the process time of the crystallization. The main heat treatment for the crystallization was performed at the same condition of $600^{\circ}C$/18 h in conventional furnace. The open-circuit voltages ($V_{oc}$) were remained about 450 mV up to the nucleation condition of 16min in the nucleation RTP temperature of $680^{\circ}C$. It meat that the process time for the crystallization step could be reduced by adding the nucleation step without decreasing the electrical property of the thin film Si for the solar cell application.

Analytical strategies for floating solar PV policy development in South Korea

  • Lee, Youhyun;Kim, Kyoungmin
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.7-14
    • /
    • 2022
  • Using the SWOT-AHP method, this study identifies the priorities in the development of floating solar photovoltaics (PV) and suggests possible strategies. Our study analyzed the priorities in planning future solar PV strategies based on the opinions of 27 experts. Our results indicate that the government should expand support while emphasizing the benefit of floating solar PV in that it causes less environmental damage compared to onshore solar PV. In addition, the government should properly deal with the public-private conflict regarding the installation of floating solar PV. Floating solar PV itself has not reached a mature technological and institutional stage, but could be an option or alternative for saturated onshore solar PV facilities in Korea.

Analysis of Soiling for the Installation Direction of PV Module (태양전지 모듈의 설치방향에 따른 오염특성 분석)

  • Lee, Chung Geun;Shin, Woo Gyun;Lim, Jong Rok;Ju, Young Chul;Hwang, Hye Mi;Ko, Suk Whan;Chang, Hyo Sik;Kang, Gi Hwan
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.76-82
    • /
    • 2020
  • Soiling on the surface of a PV module reduces the amount of light reaching the solar cells, decreasing power performance. The performance of the PV module is generally restored after contaminants on the module surface are washed away by rain, but it accumulates at the bottom of the module owing to the thickness of the module frame, causing an output mismatch on the PV module. Since PV modules are usually installed horizontally or vertically outdoors, soiling can occur at the bottom of the PV module, depending on the installation direction due to external environmental factors. This paper is analyzed the output characteristics of a PV module considering its installation direction and the soiling area. The soiling was simulated to use transparent films with 5% transmittance, and the transmission film was attached to the bottom part of the PV module horizontally and vertically. When the soiling area was 33% of the string at the bottom of the PV module, the power output decreased similarly regardless of installation direction. However, when the soiling area was 66% of the string at the bottom of the PV module, it was confirmed that the output performance decreased sharply when installed vertically rather than horizontally.