DOI QR코드

DOI QR Code

Evaluation of Solar Cell Properties of Poly-Si Thin Film Fabricated with Novel Process Conditions for Solid Phase Crystallization

고상 결정화법을 위한 새로운 공정조건으로 제작된 다결정 Si 박막의 태양전지 특성 평가

  • Kweon, Soon-Yong (Department of Materials Engineering, ReSEM, Chungju National University) ;
  • Jeong, Ji-Hyun (Department of Materials Engineering, ReSEM, Chungju National University) ;
  • Tao, Yuguo (University of New South Wales, ARC Photovoltaics Center of Excellence) ;
  • Varlamov, Sergey (University of New South Wales, ARC Photovoltaics Center of Excellence)
  • 권순용 (충주대학교 신소재공학과, 친환경에너지 부품소재센터) ;
  • 정지현 (충주대학교 신소재공학과, 친환경에너지 부품소재센터) ;
  • ;
  • Received : 2011.08.01
  • Accepted : 2011.08.23
  • Published : 2011.09.01

Abstract

Amorphous Si (a-Si) thin films of $p^+/p^-/n^+$ were deposited on $Si_3N_4$/glass substrate by using a plasma enhanced chemical vapor deposition (PECVD) method. These films were annealed at various temperatures and for various times by using a rapid thermal process (RTP) equipment. This step was added before the main thermal treatment to make the nuclei in the a-Si thin film for reducing the process time of the crystallization. The main heat treatment for the crystallization was performed at the same condition of $600^{\circ}C$/18 h in conventional furnace. The open-circuit voltages ($V_{oc}$) were remained about 450 mV up to the nucleation condition of 16min in the nucleation RTP temperature of $680^{\circ}C$. It meat that the process time for the crystallization step could be reduced by adding the nucleation step without decreasing the electrical property of the thin film Si for the solar cell application.

Keywords

References

  1. S. S. Kim, D. G. Lim, D. Y. Kim, J. M. Kim, C. Y. Won, and J. Yi, J. KIEEME, 10, 1034 (1997).
  2. H. Y. Kwon, J. D. Lee, M. J. Kim, and S. H. Lee, J. KIEEME, 23, 571 (2010).
  3. D. E. Carlson and C. R. Wronski, Appl. Phys. Lett., 29, 602 (1976). https://doi.org/10.1063/1.89158
  4. D. I. Staebler and C. R. Wronski, Appl. Phys. Lett., 31, 292 (1977). https://doi.org/10.1063/1.89674
  5. T. Matsuyama, M. Taguchi, M. Tanaka, T. Matsuoka, S. Tsuda, S. Nakano, and Y. Kuwano, Jpn. J. Appl. Phys., 29, 2690 (1990). https://doi.org/10.1143/JJAP.29.2690
  6. A. G. Aberle, Thin Solid Films, 26, 511 (2006).
  7. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovolt: Res. Appl., 17, 320 (2009). https://doi.org/10.1002/pip.911
  8. G. Jin, P. I. Widenborg, P. Campbell, and S. Varlamov, Prog. Photovolt: Res. Appl., 18, 1 (2010). https://doi.org/10.1002/pip.926
  9. O. Kunz, Z. Ouyang, S. Varlamov, and A. G. Aberle, Prog. Photovolt: Res. Appl., 17, 567 (2009). https://doi.org/10.1002/pip.908
  10. O. Kunz, J. Wong, J. Janssens, J. Bauer, O. Breitenstein, and A. G. Aberle, Prog. Photovolt: Res. Appl., 17, 35 (2009). https://doi.org/10.1002/pip.866
  11. J. K . Saha, N. Ohse, K. Hamada, H. Matsui, T. Kobayashi, H. Jia, and H. Shirai, Sol. Energy Mater. Sol. Cells, 94, 524 (2010). https://doi.org/10.1016/j.solmat.2009.11.017
  12. B. S. Richards, A. Lambertz, and A. B. Sproul, Thin Solid Films, 460, 247 (2004). https://doi.org/10.1016/j.tsf.2004.01.072
  13. M. Moniwa, K. Kusukawa, M. Ohkura, and E. Takeda, Jpn. J. Appl. Phys., 32, 312 (1993). https://doi.org/10.1143/JJAP.32.312
  14. C. Spinella, S. Lombardo, and F. Priolo, J. Appl. Phys., 84, 5383 (1998). https://doi.org/10.1063/1.368873
  15. Z. Ouyang, Ph. D. Thesis (The University of New South Wales, Sydney, 2011) p.101.