Browse > Article
http://dx.doi.org/10.12989/mwt.2022.13.1.007

Analytical strategies for floating solar PV policy development in South Korea  

Lee, Youhyun (Ajou University, Department of Public Administration)
Kim, Kyoungmin (National Assembly Research Service)
Publication Information
Membrane and Water Treatment / v.13, no.1, 2022 , pp. 7-14 More about this Journal
Abstract
Using the SWOT-AHP method, this study identifies the priorities in the development of floating solar photovoltaics (PV) and suggests possible strategies. Our study analyzed the priorities in planning future solar PV strategies based on the opinions of 27 experts. Our results indicate that the government should expand support while emphasizing the benefit of floating solar PV in that it causes less environmental damage compared to onshore solar PV. In addition, the government should properly deal with the public-private conflict regarding the installation of floating solar PV. Floating solar PV itself has not reached a mature technological and institutional stage, but could be an option or alternative for saturated onshore solar PV facilities in Korea.
Keywords
floating solar PV; floating photovoltaic (FPV); Korean energy policy; SWOT-AHP;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yoshino, N., Taghizadeh-Hesary, F. and Otsuka, M. (2020), "Covid-19 and optimal portfolio selection for investment in sustainable development goals", Finance Res. Lett., 101695. https://doi.org/10.1016/j.frl.2020.101695.   DOI
2 Kuzemko, C., Bradshaw, M., Bridge, G., Goldthau, A., Jewell, J., Overland, I., Scholten, D., Graaf. T.V. and Westphal, K. (2020), "Covid-19 and the politics of sustainable energy transitions", Energ. Res. Social Sci., 68, 101685. https://doi.org/10.1016/j.erss.2020.101685.   DOI
3 Lee, S.H., Lee, N.H., Choi, H.C. and Kim, J.O. (2012), "Study on analysis of suitable site for development of floating photovoltaic system", J. Korean Inst. Illuminat. Electr. Install. Eng., 26(7), 30-38. https://doi.org/10.5207/JIEIE.2012.26.7.030.   DOI
4 Moore, S. and Hackett, E.J. (2016), "The construction of technology and place: Concentrating solar power conflicts in the United States", Energ. Res. Social Sci., 11, 67-78. https://doi.org/10.1016/j.erss.2015.08.003.   DOI
5 Oliveira-Pinto, S. and Stokkermans, J. (2020), "Assessment of the potential of different floating solar technologies-Overview and analysis of different case studies", Energ. Convers. Manage., 211, 112747. https://doi.org/10.1016/j.enconman.2020.112747.   DOI
6 Saaty, R.W. (1987), "The analytic hierarchy process-what it is and how it is used", Math. Modell., 9(3-5), 161-176. https://doi.org/10.1016/0270-0255(87)90473-8.   DOI
7 SERIS. (2019), Where Sun meets Water; SERIS, Washington, U.S.A. https://openknowledge.worldbank.org/handle10986/31880.
8 Suman, M.N.H., Chyon, F.A. and Ahmmed, M.S. (2020), "Business strategy in Bangladesh-Electric vehicle SWOT-AHP analysis: Case study", Int. J. Eng. Bus. Manage., 12, 1847979020941487. https://doi.org/10.1177/1847979020941487.   DOI
9 Sukarso, A.P. and Kim, K.N. (2020), "Cooling effect on the floating solar PV: Performance and economic analysis on the case of west Java province in Indonesia", Energies, 13(9), 2126. https://doi.org/10.3390/en13092126.   DOI
10 Huang, P. (2021), "When government-led experimentation meets social resistance? A case study of solar policy retreat in Shenzhen, China", Energ. Res. Social Sci., 75, 102031. https://doi.org/10.1016/j.erss.2021.102031.   DOI
11 Gadzanku, S., Mirletz, H., Lee, N., Daw, J. and Warren, A. (2021), "Benefits and critical knowledge gaps in determining the role of floating photovoltaics in the energy-water-food nexus", Sustainability, 13(8), 4317. https://doi.org/10.3390/su13084317.   DOI
12 Cho, S. and Kim, J. (2015), "Feasibility and impact analysis of a renewable energy source (RES)-based energy system in Korea", Energy, 85, 317-328. https://doi.org/10.1016/j.energy.2015.03.081.   DOI
13 Etongo, D., Kanninen, M., Epule, T. E. and Fobissie, K. (2018), "Assessing the effectiveness of joint forest management in Southern Burkina Faso: A SWOT-AHP analysis", Forest Policy Econ., 90, 31-38. https://doi.org/10.1016/j.forpol.2018.01.008.   DOI
14 Fereshtehpour, M., Sabbaghian, R.J., Farrokhi, A., Jovein, E.B. and Sarindizaj, E.E. (2021), "Evaluation of factors governing the use of floating solar system: A study on Iran's important water infrastructures", Renew. Energ., 171, 1171-1187. https://doi.org/10.1016/j.renene.2020.12.005.   DOI
15 Goswami, A. and Sadhu, P.K. (2021), "Adoption of floating solar photovoltaics on waste water management system: A unique nexus of water-energy utilization, low-cost clean energy generation and water conservation", Clean Technol. Environ. Policy, 1-26. https://doi.org/10.1007/s10098-021-02077-0.   DOI
16 Gurel, E. and Tat. M. (2017), "Swot analysis: A theoretical review", J. Int. Social Res., 10, 51. http://doi.org/10.17719/jisr.2017.1832.   DOI
17 Goswami, A., Sadhu, P., Goswami, U. and Sadhu, P.K. (2019), "Floating solar power plant for sustainable development: A techno-economic analysis", Environ. Prog. Sust. Energ., 38(6), 13268. https://doi.org/10.1002/ep.13268.   DOI
18 Exley, G., Armstrong, A., Page, T. and Jones, I.D. (2021), "Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification", Solar Energy, 219, 24-33. https://doi.org/10.1016/j.solener.2021.01.076.   DOI
19 Hosseini, S.E. (2020), "An outlook on the global development of renewable and sustainable energy at the time of COVID-19", Energ. Res. Social Sci., 68, 101633. https://doi.org/10.1016/j.erss.2020.101633.   DOI
20 Kim, J., Park, J., Kim, J. and Heo, E. (2013), "Renewable electricity as a differentiated good? The case of the Republic of Korea", Energ. Policy, 54, 327-334. https://doi.org/10.1016/j.enpol.2012.11.042.   DOI
21 Hooper, T., Armstrong, A. and Vlaswinkel, B. (2021), "Environmental impacts and benefits of marine floating solar", Solar Energy, 219, 11-14. https://doi.org/10.1016/j.solener.2020.10.010.   DOI
22 Kim, J. and Heo, E. (2016), "Sources of structural change in energy use: A decomposition analysis for Korea", Energ. Source Part B, 11(4), 309-313. https://doi.org/10.1080/15567249.2011.626014.   DOI
23 Lee, Y., Kim, B. and Hwang, H. (2020), "Which institutional conditions lead to a successful local energy transition? Applying fuzzy-set qualitative comparative analysis to solar PV cases in South Korea", Energies, 13(14), 3696. https://doi.org/10.3390/en13143696.   DOI
24 Ministry of Trade, Industry and Energy (2018), "Press Letter", Government report, No. 0; MOTIE., Republic of Korea
25 Ministry of Trade, Industry and Energy (2017), "Renewable energy 3020 plan", Government report, No. 0; MOTIE., Republic of Korea.
26 Pimentel Da Silva, G.D. and Branco, D.A.C. (2018), "Is floating photovoltaic better than conventional photovoltaic? Assessing environmental impacts", Impact Assess. Project Apprais., 36(5), 390-400. https://doi.org/10.1080/14615517.2018.1477498.   DOI
27 Ananda, J. and Herath, G. (2003), "The use of analytic hierarchy process to incorporate stakeholder preferences into regional forest planning", Forest Policy Econ., 5(1), 13-26. https://doi.org/10.1016/S1389-9341(02)00043-6.   DOI
28 Saaty, T.L. and Vargas, L.G. (2012), The Seven Pillars of the Analytic Hierarchy Process in Models, Methods, Concepts & Applications of the Analytic Hierarchy Process, Springer, Boston, U.S.A. https://doi.org/10.1007/978-1-4614-3597-6_2.   DOI
29 Sulaeman, S., Brown, E., Quispe-Abad, R. and Muller, N. (2021), "Floating PV system as an alternative pathway to the amazon dam underproduction", Renew. Sust. Energ. Rev., 135, 110082. https://doi.org/10.1016/j.rser.2020.110082.   DOI
30 Vaka, M., Walvekar, R., Rasheed, A.K. and Khalid, M. (2020), "A review on Malaysia's solar energy pathway towards carbon-neutral Malaysia beyond Covid'19 pandemic", J. Clean. Prod., 122834. https://doi.org/10.1016/j.jclepro.2020.122834.   DOI
31 Nam, K., Hwangbo, S. and Yoo, C. (2020), "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea", Renew. Sust. Energ. Rev., 122, 109725. https://doi.org/10.1016/j.rser.2020.109725.   DOI
32 Clemons, S.K.C., Salloum, C.R., Herdegen, K.G., Kamens, R.M. and Gheewala, S.H. (2021), "Life cycle assessment of a floating photovoltaic system and feasibility for application in Thailand", Renew. Energ., 168, 448-462. https://doi.org/10.1016/j.renene.2020.12.082.   DOI
33 Committee of Government Planning (2017), "Five-year plan of Moon Jae-in government", Government Report No. 0; Committee of Government Planning, Republic of Korea.
34 Cazzaniga, R. and Rosa-Clot, M. (2021), "The booming of floating PV", Solar Energy, 219, 3-1. https://doi.org/10.1016/j.solener.2020.09.057.   DOI
35 Korea Energy Agency (2019), "Statistics of renewable energy generation 2018", Research report No. 0; Korea energy agency, Republic of Korea.
36 Kurttila, M., Pesonen, M., Kangas, J. and Kajanus, M. (2000), "Utilizing the analytic hierarchy process (AHP) in SWOT analysis-a hybrid method and its application to a forest-certification case", Forest Policy Econ., 1(1), 41-52. https://doi.org/10.1016/S1389-9341(99)00004-0.   DOI
37 Kim, K. (2018), "Environmental issues and tasks of floating solar power pv installed in dam for supply of tap water", Research Report No. 37; National Assembly Research Service, Republic of Korea.
38 Arslan, O. and Turan, O. (2009), "Analytical investigation of marine casualties at the Strait of Istanbul with SWOT-AHP method", Maritime Policy Manage., 36(2), 131-145. https://doi.org/10.1080/03088830902868081.   DOI
39 Solangi, Y.A., Tan, Q., Mirjat, N.H. and Ali, S. (2019), "Evaluating the strategies for sustainable energy planning in Pakistan: An integrated SWOT-AHP and Fuzzy-TOPSIS approach", J. Clean. Prod., 236, 117655. https://doi.org/10.1016/j.jclepro.2019.117655.   DOI
40 Woo, J., Chung, S., Lee, C.Y. and Huh, S.Y. (2019), "Willingness to participate in community-based renewable energy projects: A contingent valuation study in South Korea", Renew. Sust. Energ. Rev., 112, 643-652. https://doi.org/10.1016/j.rser.2019.06.010.   DOI