• Title/Summary/Keyword: Solar Photovoltaic Energy

Search Result 1,274, Processing Time 0.032 seconds

A Study on Fault Detection for Photovoltaic Power Modules using Statistical Comparison Scheme (통계학적 비교 기법을 이용한 태양광 모듈의 고장 유무 검출에 관한 연구)

  • Cho, Hyun Cheol;Jung, Young Jin;Lee, Gwan Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.89-93
    • /
    • 2013
  • In recent years, many investigations about photovoltaic power systems have been significantly carried out in the fields of renewable power energy. Such research area generally includes developments of highly efficient solar cells, advanced power conversion systems, and smart monitoring systems. A generic objective of fault detection and diagnosis techniques is to timely recognize unexpected faulty of dynamic systems so that economic demage occurred by such faulty is decreased by means of engineering techniques. This paper presents a novel fault detection approach for photovoltaic power arrays which are electrically connected in series and parallels. In the proposed fault detection scheme, we first measure all of photovoltaic modules located in each array by using electronic sense systems and then compare each measurement in turn to detect location of fault module through statistic computation algorithm. We accomplish real-time experiments to demonstrate our proposed fault detection methodology by using a test-bed system including two 20 watt photovoltaic modules.

Improved Understanding of LeTID of Single-crystalline Silicon Solar Cell with PERC

  • Kim, Kwanghun;Baik, Sungsun;Park, Jaechang;Nam, Wooseok;Jung, Jae Hak
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.94-101
    • /
    • 2018
  • Light elevated temperature induced degradation (LeTID) was noted as an issue in multi-crystalline silicon solar cells (MSSC) by Ram speck in 2012. In contrast to light induced degradation (LID), which has been researched in silicon solar cells for a long time, research about both LeTID and the mechanism of LeTID has been limited. In addition, research about LeTID in single-crystalline silicon solar cells (SSSC) is even more limited. In order to improve understanding of LeTID in SSSC with a passivated emitter rear contact (PERC) structure, we fabricated four group samples with boron and oxygen factors and evaluated the solar cell characteristics, such as the cell efficiency, $V_{oc}$, $I_{sc}$, fill factor (FF), LID, and LeTID. The trends of LID of the four group samples were similar to the trend of LeTID as a function of boron and oxygen.

Performance Analysis of Cost Effective Portable Solar Photovoltaic Water Pumping System

  • Parmar, Richa;Banerjee, Chandan;Tripathi, Arun K.
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.51-58
    • /
    • 2021
  • Solar water pumping system (SWPS) is reliable and beneficial for Indian farmers in irrigation and crop production without accessing utility. The capability of easy installation and deployment, makes it an attractive option in remote areas without grid access. The selection of portable solar based pumps is pertaining to its longer life and economic viability due to lower running cost. The work presented in this manuscript intends to demonstrate performance analysis of portable systems. Consequent investigation reveals PSWS as the emerging option for rural household and marginal farmers. This can be attributed to the fact that, a considerable portion (around 45.7%) of the country's land is farmland and irrigation options are yet to reach farmers who entirely rely on rain water at present for harvesting of the crops. According to census 2010-2011 tube wells are the main source for irrigation amongst all other sources followed by canals. Out of the total 64.57-million-hectare net irrigation area, 48.16% is accounted by small and marginal holdings, 43.77% by semi-medium and medium holdings, and 8.07% by large holdings. As per 2015-16 census data, nearly 100 million farming households would struggle to make ends meet. The work included in this manuscript, presents the performance of different commercial brands and different technologies of DC surface solar water micro pumping systems have been studied (specifically, the centrifugal and reciprocating type pumps have been considered for analysis). The performance of the pumping systems has been analyzed and data is evaluated in terms of quantity of water impelled for specific head. The reciprocating pump has been observed to deliver the best system efficiency.

A Study on the Optimum Design of Photovoltaic Systems for Ligthouses (유인등대용(有人登臺用) 태양광발전(太陽光發電) 시스템 최적설계(最適設計)에 관한 연구(硏究))

  • Jung, Myung-Woong;Lee, Man-Gun;Song, Jin-Soo
    • Solar Energy
    • /
    • v.7 no.2
    • /
    • pp.14-21
    • /
    • 1987
  • For the purpose of a the application of photovoltaics, we have studied about photovoltaic systems for maned lighthouses. The current status of manned lighthouses in Korea are reviewed and detailed descriptions of the 6.48 Kwp photovoltaic system on Heuksando island are described in this paper. And we have discussed about expected effects and problems of this system.

  • PDF

Photovoltaic Generation Forecasting Using Weather Forecast and Predictive Sunshine and Radiation (일기 예보와 예측 일사 및 일조를 이용한 태양광 발전 예측)

  • Shin, Dong-Ha;Park, Jun-Ho;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.643-650
    • /
    • 2017
  • Photovoltaic generation which has unlimited energy sources are very intermittent because they depend on the weather. Therefore, it is necessary to get accurate generation prediction with reducing the uncertainty of photovoltaic generation and improvement of the economics. The Meteorological Agency predicts weather factors for three days, but doesn't predict the sunshine and solar radiation that are most correlated with the prediction of photovoltaic generation. In this study, we predict sunshine and solar radiation using weather, precipitation, wind direction, wind speed, humidity, and cloudiness which is forecasted for three days at Meteorological Agency. The photovoltaic generation forecasting model is proposed by using predicted solar radiation and sunshine. As a result, the proposed model showed better results in the error rate indexes such as MAE, RMSE, and MAPE than the model that predicts photovoltaic generation without radiation and sunshine. In addition, DNN showed a lower error rate index than using SVM, which is a type of machine learning.

A study on the Optical and electrical characteristics of Tri-silicon using wet texture (습식텍스쳐를 이용한 삼결정 실리콘 광학적.전기적 특성 연구)

  • Han, Kyu-Min;Yoo, Jin-Su;Yoo, Kwon-Jong;Lee, Hi-Deok;Choi, Sung-Jin;Kwon, Jun-Young;Kim, Ki-Ho;Yi, Jun-Sin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.180-182
    • /
    • 2009
  • Two different wet etching solutions, NaOH 40% and Acid, were used for etching in tri-crystalline Silicon(Tri-Si) solar cell fabrication. The wafers etched in NaOH40% solution showed higher reflectance compared to the wafers etched in Acid solution after $SiN_x$ deposition. In light current-voltage results, the cells etched in Acid solution exhibited higher short circuit current and open circuit voltage than those of the cells etched in NaOH 40% solution. We have obtained 16.70% conversion efficiency in large area($156cm^2$) Tri-Si solar cells etched in Acid solution.

  • PDF

Hybrid System of Solar Cell and Fuel Cell (태양광발전과 연료전지의 하이브리드 시스템)

  • Hwang, Jun-Won;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.568-573
    • /
    • 2009
  • Because of environmental crisis, researchers are seeking and developing a new, clean, safe and renewable energy. Solar cell energy and fuel cell energy have inestimable development potential. The paper introduces hybrid photovoltaic-fuel cell generation systems supplying a remote power load and hybrid system of solar cell and fuel cell considering the advantages of stable and sustainable energy from the economic point of view. Fuel cell power system has been proven a viable technology to back up severe PV power fluctuations under inclement weather conditions. Fuel cell power generation, containing small land us, is able to alleviate the heavy burden for large surface requirement of PV power plants. In addition, the PV-fuel cell hybrid power system shows a very little potential for lifetime $CO_2$ emissions. In this paper shows the I-V characteristics of the solar module which are dependent on the power of the halogen lamp and the I-V characteristics of fuel cells which are connected in parallel. Also, it shows efficiency of the hybrid system.

A Study on the Optimization of CP Based Low-temperature Tabbing Process for Fabrication of Thin c-Si Solar Cell Module (박형 태양전지모듈 제작을 위한 저온 CP 공정 최적화에 관한 연구)

  • Jin, Ga-Eon;Song, Hyung-Jun;Go, Seok-Whan;Ju, Young-Chul;Song, Hee-eun;Chang, Hyo-Sik;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.77-85
    • /
    • 2017
  • Thin crystalline silicon (C-Si) solar cell is expected to be a low price energy source by decreasing the consumption of Si. However, thin c-Si solar cell entails the bowing and crack issues in high temperature manufacturing process. Thus, the conventional tabbing process, based on high temperature soldering (> $250^{\circ}C$), has difficulties for applying to thin c-Si solar cell modules. In this paper, a conductive paste (CP) based interconnection process has been proposed to fabricate thin c-Si solar cell modules with high production yield, instead of existing soldering materials. To optimize the process condition for CP based interconnection, we compared the performance and stability of modules fabricated under various lamination temperature (120, 150, and $175^{\circ}C$). The power from CP based module is similar to that with conventional tabbing process, as modules are fabricated. However, the output of CP based module laminated at $120^{\circ}C$ decreases significantly (14.1% for Damp heat and 6.1% for thermal cycle) in harsh condition, while the output drops only in 3% in the samples process at $150^{\circ}C$, $175^{\circ}C$. The peel test indicates that the unstable performance of sample laminated at $120^{\circ}C$ is attributed to weak adhesion strength (1.7 N) between cell and ribbon compared to other cases (2.7 N). As a result, optimized lamination temperature for CP based module process is $150^{\circ}C$, considering stability and energy consumption during the fabrication.

Daily Operating Characteristics of Desalination System with Solar Energy (태양에너지 해수담수화 시스템 일일 운전 특성)

  • Kwak, Hee-Youl;Joo, Hong-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.262-265
    • /
    • 2009
  • This study was carried out to evaluate the clear day operating performances for the decentralized desalination system with the solar thermal system and the photovoltaic power system. In a clear day, we used a solar thermal system as heat source of the single-stage fresh water generator with plate-type heat exchangers and a photovoltaic power system as electric source for hydraulic pumps. The demonstration system generation was designed and installed at Jeju-island in 2006. The system was comprised of the desalination unit with daily fresh water capacity designed as $2m^3$, a $120m^3$ evacuated tubular solar collector to supply the heat, a $6m^3$ heat storage tank, and a 5.2kW photovoltaic power generation to supply the electricity of hydraulic pumps for the heat medium fluids. In a clear day, solar irradiance daily averaged was measured $518W/m^3$, the daily fresh water yield showed that about 565 liter.

  • PDF

Potential Wide-gap Materials as a Top Cell for Multi-junction c-Si Based Solar Cells: A Short Review

  • Pham, Duy Phong;Lee, Sunhwa;Kim, Sehyeon;Oh, Donghyun;Khokhar, Muhammad Quddamah;Kim, Sangho;Park, Jinjoo;Kim, Youngkuk;Cho, Eun-Chel;Cho, Young-Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.76-84
    • /
    • 2019
  • Silicon heterojunction solar cells (SHJ) have dominated the photovoltaic market up till now but their conversion performance is practically limited to around 26% compared with the theoretical efficiency limit of 29.4%. A silicon based multi-junction devices are expected to overcome this limitation. In this report, we briefly review the state-of-art characteristic of wide-gap materials which has played a role as top sub-cells in silicon based multi-junction solar cells. In addition, we indicate significantly practical challenges and key issues of these multi-junction combination. Finally, we focus to some characteristics of III-V/c-Si tandem configuration which are reaching highly record performance in multi-junction silicon solar cells.