• Title/Summary/Keyword: Solar PV System

Search Result 670, Processing Time 0.039 seconds

Output Control Simulation of PV-AF Generation System under Various Weather Conditions (다양한 기상조건하에서의 AF기능을 갖는 태양광발전시스템의 출력제어 시뮬레이션)

  • Seong, Nak-Gueon;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1364-1366
    • /
    • 2002
  • The Photovoltaic(PV) generation system is a promising source of energy for the future. Since the need for renewable energy has been increased, the research of PV generation system has also been progressed. Recently, cost down of PV generation system has been accomplished and practical technologies of the solar energy developed, Moreover, grid connected PV generation system are becoming actual and general. Operational technology of the grid connected PV generation system is being a hot issue. Power output of PV system is directly affected by wether conditions. When AC power supply is needed, power conversion by an inverter and a MPPT control are necessary. In this paper, for stability improvement of PV generation system. Active filter(AF) function is added to PV generation system, and simulations of PV-AF system under various weather conditions are performed.

  • PDF

Modeling of Grid-Connected Photovoltaic Generation using Matlab/Simulink (Matlab/Simulink를 이용한 계통연계형 태양광발전 모델링)

  • Seo, H.C.;Yoon, Y.M.;Kim, S.R.;Lee, S.B.
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.92-94
    • /
    • 2008
  • This paper introduces the modeling of grid-connected photovoltaic(PV) generation using Matiab/Simulink. The model is based on the equivalent circuit of the PV solar cell including the effects of solar irradiation and temperature changes. The PV arrays are modeled to be built up with the series/parallel combination of PV solar cell and are connected to the distribution system via an inverter. The simulation results show that the typical characteristics and outputs of the PV arrays are accurate.

  • PDF

Solar-hydrogen Production by a Monolithic Photovoltaic-electrolytic Cell

  • Jeon, Hyo Sang;Min, Byoung Koun
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.149-153
    • /
    • 2012
  • Among the various solar-hydrogen production techniques a combination of a photovoltaic (PV) and an electrolytic cell into one single system, a monolithic PV-electrolytic cell, has been suggested as a promising one in terms of efficiency and stability. In this mini-review, we describe our recent efforts on the fabrication of the monolithic PV-electrolytic cell. Particularly, we focus on the electrocatalysts for water oxidation and its fabrication method suitable for a monolithic PV-electrolytic cell. We also introduce proto-type devices with a dye-sensitized solar cell module and an InGaP/GaAs photoelectrodes.

An Experimental Study of PV/Thermal Combined Collector Module (평판형 액체식 PVT 모듈의 성능 실험 분석)

  • Kang, Jun-Gu;Kim, Jin-Hee;Kim, Jun-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.780-785
    • /
    • 2009
  • The photovoltaic/thermal collectors (PV/T collectors) combine the solar thermal collector and photovoltaic modules. They can produce thermal energy in the form of hot air or hot water, and converts solar radiation into electricity. The collecctors can improve the electrical performance of PV modules as the heat from the PV module carried away by the thermal part of the system keeping temperatures lower. The basic water cooled PVT collector has metallic water pipes attached to the back of a PV collector. There are main parameters affecting the performance (electrical and thermal) of PVT collectors. This paper analyzed the experimental performance of glazed water PVT module, considering the parameters of solar radiation, inlet water temperature and ambient temperature. It found that solar radiation is the dominant factor for the electrical performance of the collector, and for the thermal performance the inlet water temperature and ambient temperature appeared to be more related.

  • PDF

Electrical Characteristics of PV Modules with Odd Strings by Arrangement on Bypass Diode (홀수스트링 PV모듈의 바이패스 다이오드 배치에 의한 전기적 특성)

  • Shin, Woo-Gyun;Go, Seok-Hwan;Ju, Young-Chul;Song, Hyung-Jun;Kang, Gi-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • Most PV modules are fabricated by 6 cell-strings with solar cells connected in series. Moreover, bypass diodes are generally installed every 2 cell-strings to prevent PV modules from a damage induced by current mismatch or partial shading. But, in the case of special purpose PV module, like as BIPV (Building Integrated Photovoltaic), the number of cell-strings per module varies according to its size. Differ from a module employing even cell-strings, the configuration of bypass diode should be optimized in the PV module with odd strings because of oppositely facing electrodes. Hence, in this study, electrical characteristics of special purposed PV module with odd string was empirically and theoretically studied depending on arrangement of bypass diode. Here, we assumed that PV module has 3 strings and the number of bypass diodes in the system varies from 2 to 6. In case of 2 bypass diodes, shading on a center string increases short circuit current of the module, because of a parallel circuit induced by 2 bypass diodes connected to center string. Also, the loss is larger, as the shading area in the center string is enlarged. Thus, maximum power of the PV module with 2 bypass diode decreases by up to 59 (%) when shading area varies from 50 to 90 (%). On the other hand, In case of 3 and 6 bypass diodes, the maximum power reduction was within about 3 (W), even the shading area changes from 50 to 90 (%). As a result, It is an alternative to arrange the bypass diode by each string or one bypass diode in the PV module in order to completely bypass current in case of shading, when PV module with odd string are fabricated.

A Study on Optimum of Performance Objectives of Passive House with Load Reduction elements (천공상태에 따른 박막 BIPV 창호의 온도 및 발전특성 실측연구)

  • Kim, Bit-Na;Yoon, Jong-Ho;Shin, U-Cheu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.171-176
    • /
    • 2012
  • This research on building Integrated Photovoltaic System replacing windows and doors with amorphous silicon thin film PV windows and doors installing same exact mount on Mock-up. The windows and doors should be installed in different angle and bearing so that we can analyse the amount of electricity from them. The objective of the research is to evaluate and investigate the relationship between factors(intensity of solar radiation, PV window surface temporature, incidence angle, and sky conditions) that affects performance of PV window and performance. The range and method of this research is to establish mornitoring system and analysis the date from the mornitoring system to evaluate the performance of PV windows that has thin film of solar battery. We should evaluate the insolation according to the position of PV window, output, and surface temperature according to months and seasons so that we can figure out the relationship between these. And we should investigate the relationship between performance and efficiency according to incidence angle and sky condition so that we can figure out the correlation between factors and performance.

  • PDF

Performance Monitoring Results, Evaluation and Analysis of 50kW Grid-Connected PV System (50kW급 계통연계형 태양광발전시스템의 성능모니터링 결과 및 평가분석)

  • So, Jung-Hun;Yu, Byung-Gyu;Hwang, Hye-MI;Yu, Gwon-Jong;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.29-35
    • /
    • 2007
  • Monitoring system is constructed for evaluating and analyzing performance of installed 50kW grid-connected PV system and have been monitored since October 2005. As climatic and irradiation conditions have been varied through long-term operation, there is necessity for evaluating numerical values of PV(Photovoltaic) system performance to observe the overall effect of environmental conditions on their operation characteristics. This paper presents performance monitoring results and analysis on component perspective(PV array and power conditioning system) and global perspective(yield, losses) of PV system for one year monitoring periods.

A Novel Simulation Method of PV Generation System using Field Data (실제 데이터를 이용한 태양광 발전시스템의 시뮬레이션)

  • Park, Min-Won;Kim, Bong-Tae;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.11a
    • /
    • pp.52-54
    • /
    • 2000
  • In PV power generation system study, huge system apparatuses are needed in order to verify the effect of system efficiency and stability considering the size of solar panels, the sort of converter types, and the load conditions and so on. And also, under the same weather and load conditions it is impossible to compare a certain MPPT control scheme to others. In this paper, in order to obtain effective solutions for the above mentioned topics, the solar cell array is simulated with it's VI characteristic equations, and the real field data of weather conditions is interfaced to EMTDC using Fortran program interface method. Consequently the simulation of PV power generation system using field data is realized in this paper, and acceptable results, which show close match between the real data of PV panel and the simulated data, were obtained.

  • PDF

Control of a Novel PV Tracking System Considering the Shadow Influence (그림자 영향을 고려한 새로운 태양광 추적시스템 제어)

  • Park, Ki-Tae;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.994-1002
    • /
    • 2008
  • In this paper a novel tracking system is described, regarding the influence of shadow between array, aimed at improving the efficiency of PV tracking system. Comparing with a building site versus capacity power, domestic solar powers have a limited siting. Therefore, each array interferes with the shadow of other arrays. The loss by influence of those shadow can be compensated for by means of control algorithm of the tracking device. The paper suggests a method controlling an altitude for length which is received the shadow influence of PV array. By using an azimuth of current solar position and the length between arrays, the controller of tracking device is able to calculate the length between actual arrays and make a comparison of the shadow length at a specific time with the length between arrays. When the shadow length is longer than the length between arrays, the controller of tracking device can adjust a position by compensating error altitude of the length between arrays at an altitude of current solar position. In the paper, we develop the control algorithm able to minimize the loss caused by the influence of shadow on the PV tracking system, and compared this with conventional output system. The controller has been tested in the laboratory with proposed algorithm and shows excellent performance.

The improved efficiency Study of PV system for the Solar lamp lighting (태양광 가로등 발전 효율개선 연구)

  • Kang, Sin-Young;Lee, Yang-Guy;Kim, Kwang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.304-308
    • /
    • 2002
  • This paper studies stand-alone photovoltaic array for solar lighting lamp. The solar lighting lamp has PV modules, batteries. and charge & discharge system. The charge efficiency is improved for the control of each battery which is divided the charge from the discharge to change the structure of existing solar lighting lamp charge & discharge system. so, the charge and discharge times are reduced of 50%. and the depth of discharge control can be controlled in the discharge cut off voltage. This can be effective of battery use. If a battery is out of order, this system can be executed for a regular period. so we saved the repair cost and developed of system's stabilization. It is possible economical effect to apply for solar lighting lamp used photovoltaic array.

  • PDF