• 제목/요약/키워드: Solanum

검색결과 548건 처리시간 0.027초

Characteristics of inorganic nutrient absorption of potato (Solanum tuberosum L.) plants grown under drought condition

  • Bak, Gyeryeong;Lee, Gyejun;Kim, Taeyoung;Lee, Yonggyu;Kim, Juil;Ji, Samnyeo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.181-181
    • /
    • 2017
  • Global warming and climate change have been one of the most important problems last 2 decades. Global warming is known to cause abnormal climate and influence ecology, food production and human health. According to climate change model global warming is causing expansion of drought and increase of evaporation. Therefore, securing water in agriculture has been an important issue for crop cultivation. As potato is susceptible to drought, water shortage generally results in decrease of yield and decrease of biomass. In this research, we investigated characteristics of inorganic nutrient absorption and growth of plants grown under drought condition. Plants were sampled in sites of Cheong-ju and Gangneung, where the severity of drought stress were different. During the growth period in Gangneung, total rainfall in 2016 decreased by 50% compared with those in last 5 years average. Especially, there was almost no rain in tuber enlargement period (from mid-May to mid-June). On the other hand, the total rainfall in of Cheong-ju was is similar to those in last 5 years average. Inorganic components including K, Ca and Mg and plant growth factors such as plant length, stem length, leaf area index and plant biomass were investigated. Tuber yields in both areas were investigated at harvest. Growth period of plants was is longer in Cheong-ju than that in Gangneung. Contents of all inorganic components were higher in plants grown in Cheong-ju than in Gangneung. The results were attributed to higher production of plant biomass in Cheong-ju. Considering the results, severe drought stress conditions in Gangneung accelerated plant aging and resulted in low plant growth. Although total yield was greatly reduced under drought stress the rate of commercial yield was is not significantly different with non-drought conditions.

  • PDF

Genetic diversity of conserved potato germplasm using microsatellite markers

  • Lee, Gi-An;Cho, Kwang-Soo;Shin, Myoung-Jae;Lee, Jung-Ro;Cho, Yang-Hee;Ma, Kyung-Ho
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.85-85
    • /
    • 2017
  • Potato is important carbohydrate source over the world in that revealing high productivity per the unit area, and their cultivation area is estimated to be increased to cope with a scarcity of food according to the population increase. Major cultivated species of potato is Solanum tuberosum (2n = 4x = 48) and regarded as being originated in Andes region of South America. The diverse potato genetic resources has been collected and perserved in Highland Agricultural Research Institute (NICS, RDA), and the genetic materials as DNA stock is conserved in National Agrobiodiversity Center(NAS, RDA). The understanding of genetic constitution of conserved diversity is the basis for the germplam management and further utilization. In this study, we analyzed the genetic diversity of potato germplasm(479 accessions) using 24 microsatellite markers which have been internationally used for fingerprinting of potato accession. The allele number and polymorphic information content (PIC) of total accessions per locus was ranged from 2 to 18 (mean = 8.2) and from 0.214 to 0.771 (mean = 0.595), respectively. Especially, the accession originated from Korea revealed average allele number of 6.0 (2 - 11) and average PIC value of 0.58 (0.193 - 0.763). Three groups were deduced by phylogenic analysis (Group-1, -2, -3); Korean accessions showed close genetic similarity to Japanese and USA accessions, and Korean landraces were mainly included in Group-3. We try to elaborate the genetic diversity analysis of conserved potato germplasm by acquiring more genotypes using applicable molecular markers.

  • PDF

양액 재배시 발생하는 Pythium myriotylum에 의한 감자 줄기기부썩음병 (Potato Basal Stem Rot Caused by Pythium myriotylum in Hydroponic Cultural System)

  • 홍순영;김진원;강영길;양영문;강형식
    • 식물병연구
    • /
    • 제10권1호
    • /
    • pp.13-16
    • /
    • 2004
  • 2000년 1월에 제주도 제주시 감자양액 재배포장에서 감자 줄기기부썩음병이 발생하였다. 병징은 감자 줄기기부와 뿌리가 갈변하였으며 심하면 고사하였다. 감자줄기 기부 썩음 증상으로부터 분리한 균의 균학적 특성을 조사한 결과 Pythium myriotylum으로 동정되었다 병원균의 주 균사의 폭은 8.4$\mu\textrm{m}$에 이르고, 장란기는 구형 또는 타원형으로 주변에 돌기가 형성되어 있지 않으며, 정생 또는 간생하였고, 크기는 21.6${\times}$31.2$\mu\textrm{m}$이었다 장정기 크기는 9.6∼14.4${\times}$4.8∼9.6$\mu\textrm{m}$이다. 난포자는 구형으로 매끈하며 주로 미충만형이고, 크기는 2l.6∼26.4$\mu\textrm{m}$이었다 수경재배 감자에서의 P. myriotylum에 의한 병은 아직 국내에 보고된 바 없어 감자 줄기기부썩음병을 최초로 보고한다.

Breeding of the native vegetables using the biotechnology

  • Iwamoto, Yuzuri
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.106-111
    • /
    • 2005
  • For breeding of a new rootstock for eggplant production, somatic hybrids between two species, Solanum integrifolium and S. sanitwongsei were obtained through protoplast fusion. The former species has been commonly used for rootstock for eggplant production in Japan. Eggplants on these rootstocks are more productive than ungrafted plants, but are susceptible to bacterial wilt caused Ralstonia solanacearum. While the latter species is resistant, the growth of eggplants on this rootstock is rather slow and low yield. Protoplast of both species were isolated from cotyledons, and inactivated with iodoacetamide or UV-irradiation, then fused electrically. The fused products were then cultured. Regenerated plantlets were then transplanted on soil then maintained in a green house. The plants were classified into four groups. Those in the first group showed morphological characters intermediate of the parentalspecies. The plants bore fruit with viable seeds. The plants showed a chromosome number of 2n=48, the sum of those of the parental species, and are suggested to be symmetric fusion products. While plants in the other groupswas less vigorous and showed chromosome number 2n= 68 to 72 suggesting asymmetric fusion products by genomic in situ hybridization(GISH). Isozyme pattern of shikimate dehydrogenase (SKDH; EC 1.1.1.25), isocitrate dehydrogenase (IDH; EC 1.1.1.41) and phosphoglucomutase (PGM; EC 2.7.5.1) showed that 24 regenerated plants in three groups were somatic hybrids. Analysis of random amplified polymorphic DNA (RAPD) showed that 43 S. integrifolium-specific and 57 S. sanitwongsei-specific bands were all found in 24 plants. Both somatic hybrids and its S1 plants were found to be resistant to bacterial wilt, and eggplant grafted these plants using for rootstocks were more productive than grafted mother plants. Now, S1 progenies are used for commercial eggplant production in Osaka Prefecture.

  • PDF

Cholera Toxin B Subunit-Porphyromonas gingivalis Fimbrial Antigen Fusion Protein Production in Transgenic Potato

  • Lee, Jin-Yong;Kim, Mi-Young;Jeong, Dong-Keun;Yang, Moon-Sik;Kim, Tae-Geum
    • Journal of Plant Biotechnology
    • /
    • 제36권3호
    • /
    • pp.268-274
    • /
    • 2009
  • Porphyromonas gingivalis, the gram-negative anaerobic oral bacterium, initiates periodontal disease by binding to saliva-coated oral surface. The cholera toxin B subunit (CTB) genetically linked to FimA1 (1-200 aa) or FimA2 (201-337 aa) of the P. gingivalis fimbrial antigen were introduced into Solanum tuberosum cells by Agrobacterium tumefaciens-mediated transformation method. The integration of CTB-FimA1 or CTB-FimA2 fusion genes were confirmed in the chromosome of transformed leaves by genomic DNA PCR amplification method. Synthesis and assembly of the CTB-FimA fusion proteins into oligomeric structures with pentamer size was detected in transformed tuber extracts by immunoblot analysis. The binding activities of CTB-FimA fusion proteins to intestinal epithelial cell membrane receptors were confirmed by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). The ELISA showed that the expression levels of the CTB-FimA1 or CTB-FimA2 fusion proteins were 0.0019, 0.002% of the total soluble protein in transgenic tuber tissues, respectively The synthesis of CTB-FimA monomers and their assembly into biologically active oligomers in transformed potato tuber tissues demonstrates the feasibility of using edible plants for the production of enterocyte targeted fimbrial antigens that could elicit mucosal immune responses.

Farmers Preference and Perception towards Cropland Agroforestry in Bangladesh

  • Chakraborty, M.;Haider, M.Z.;Rahaman, M.M.
    • Journal of Forest and Environmental Science
    • /
    • 제31권4호
    • /
    • pp.241-254
    • /
    • 2015
  • This study attempts to examine farmers' preference and perception towards cropland agroforestry (CAF) and its economic benefits in Bangladesh. It surveys 84 farmers of two sub-districts named Manirampur and Bagherpara under Jessore district of Bangladesh to address the study objectives with the help of a questionnaire during the period of June to July 2013. We follow a multistage random sampling procedure for selecting respondents of the survey. A total of 27 plant species under 19 families are identified in the surveyed crop fields, among which 11 are tree species and 1 is shrub from 8 families and 15 species are agricultural crops from 11 families. According to the survey findings, most of the farmers prefer multipurpose tree species like Swietenia macrophylla (67 percent), Phoenix sylvestris (48 percent), Mangifera indica (48 percent) and Cocos nucifera (43 percent). We also find that Curcuma longa (92 percent), Oryza spp. (56 percent), Solanum melongena (43 percent) and Amorphophallus campanulatus (33 percent) are the available agriculture crops which are grown in association with trees in the study area. The surveyed farmers report that they practice CAF to get fuel wood, fodder, juice, fruit and food for family consumption and revenue earnings. About 76 percent of the surveyed farmers endorse the existence of a positive interaction between trees and agriculture crops, while the rest 24 percent endorse the existence of a negative interaction between trees and agriculture crops. This study finds that CAF farmers on an average earn US$ 1,410 per farm per year and the yearly average revenue difference between CAF and non-cropland agroforestry (NCAF) farmers is US$ 214. Overall, CAF needs to develop through scientific intervention in the study area to conserve the biodiversity and to enhance farmers' sustainable livelihood.

Antioxidant Contents and Antioxidant Activities of White and Colored Potatoes (Solanum tuberosum L.)

  • Lee, Sang Hoon;Oh, Seung Hee;Hwang, In Guk;Kim, Hyun Young;Woo, Koan Sik;Woo, Shun Hee;Kim, Hong Sig;Lee, Junsoo;Jeong, Heon Sang
    • Preventive Nutrition and Food Science
    • /
    • 제21권2호
    • /
    • pp.110-116
    • /
    • 2016
  • This study was performed to evaluate and compare the antioxidant substance content and antioxidant activities of white (Superior) and colored (Hongyoung, Jayoung, Jasim, Seohong, and Jaseo) potatoes. The potatoes were extracted with 80% ethanol and were evaluated for the total polyphenol, flavonoid, and anthocyanin contents and for 1,1-diphenyl-2-picrylhydrazyl (DPPH)/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenging activity, reducing power, and ferrous metal ion chelating effect. The total polyphenol, flavonoid, and anthocyanin contents of Hongyoung and Jayoung were higher than white and other colored potatoes. All colored potato extracts, except for Jaseo and Seohong, showed higher ABTS radical scavenging activities than the general white potato extract. Hongyoung and Jayoung had the highest ABTS and DPPH radical scavenging activities. Optical density values for the reducing power of Jayoung and Jaseo at concentration of 2 mg/mL were 0.148 and 0.090, respectively. All colored potato extracts had lower ferrous metal ion chelating effect than the white potato. A significant (P<0.05) positive correlation was observed between total polyphenol content and total flavonoid content (r=0.919), anthocyanin content (r=0.992), and ABTS radical scavenging activity (r=0.897). Based on these results, this research may be useful in developing the Hongyoung and Jayoung cultivars with high antioxidant activities.

Enhanced Salt Stress Tolerance in Transgenic Potato Plants Expressing IbMYB1, a Sweet Potato Transcription Factor

  • Cheng, Yu-Jie;Kim, Myoung-Duck;Deng, Xi-Ping;Kwak, Sang-Soo;Chen, Wei
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권12호
    • /
    • pp.1737-1746
    • /
    • 2013
  • IbMYB1, a transcription factor (TF) for R2R3-type MYB TFs, is a key regulator of anthocyanin biosynthesis during storage of sweet potatoes. Anthocyanins provide important antioxidants of nutritional value to humans, and also protect plants from oxidative stress. This study aimed to increase transgenic potatoes' (Solanum tuberosum cv. LongShu No.3) tolerance to environmental stress and enhance their nutritional value. Transgenic potato plants expressing IbMYB1 genes under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter (referred to as SM plants) were successfully generated through Agrobacterium-mediated transformation. Two representative transgenic SM5 and SM12 lines were evaluated for enhanced tolerance to salinity, UV-B rays, and drought conditions. Following treatment of 100 mM NaCl, seedlings of SM5 and SM12 lines showed less root damage and more shoot growth than control lines expressing only an empty vector. Transgenic potato plants in pots treated with 400 mM NaCl showed high amounts of secondary metabolites, including phenols, anthocyanins, and flavonoids, compared with control plants. After treatment of 400 mM NaCl, transgenic potato plants also showed high DDPH radical scavenging activity and high PS II photochemical efficiency compared with the control line. Furthermore, following treatment of NaCl, UV-B, and drought stress, the expression levels of IbMYB1 and several structural genes in the flavonoid biosynthesis such as CHS, DFR, and ANS in transgenic plants were found to be correlated with plant phenotype. The results suggest that enhanced IbMYB1 expression affects secondary metabolism, which leads to improved tolerance ability in transgenic potatoes.

코퍼 하이드록사이드를 이용한 토마토 풋마름병 방제 (Control of Bacterial Wilt of Tomato using Copper Hydroxide)

  • 한유경;한경숙;이성찬;김수
    • 농약과학회지
    • /
    • 제15권3호
    • /
    • pp.298-302
    • /
    • 2011
  • 국내에서 Ralstonia solanacearum에 의한 풋마름병은 토마토 재배에 심각한 피해를 주고 있다. R. solanacearum에 의한 풋마름병을 방제하기 위한 약제를 선발하기 위하여 5종 항생제를 이용하여 균에 대한 생장 억제 효과와 포장에서의 토마토 풋마름병 방제효과를 조사하였다 R. solanacearum에 대한 생장억제효과를 조사한 결과, streptomycin 수화제, oxytetracyclin streptomycin sulfate 수화제, oxolinic acid 수화제는 병원균에 대한 생육억제 효과가 우수하였다. 포장에서 토마토 풋마름병에 대한 방제효과 시험을 실시한 결과, copper hydroxide 수화제가 62.5%의 가장 높은 방제효과를 나타내었다. Copper hydroxide 수화제는 친환경유기농자재에 등록된 약제로서 관행 재배뿐만 아니라 토마토 친환경 재배시에도 풋마름병 방제에 사용할 수 있을 것이다.

Pyramiding transgenes for potato tuber moth resistance in potato

  • Meiyalaghan, Sathiyamoorthy;Pringle, Julie M.;Barrell, Philippa J.;Jacobs, Jeanne M.E.;Conner, Anthony J.
    • Plant Biotechnology Reports
    • /
    • 제4권4호
    • /
    • pp.293-301
    • /
    • 2010
  • The feasibility of two strategies for transgene pyramiding using Agrobacterium-mediated transformation was investigated to develop a transgenic potato (Solanum tuberosum L. cv. Iwa) with resistance to potato tuber moth (PTM) (Phthorimaea operculella (Zeller)). In the first approach, cry1Ac9 and cry9Aa2 genes were introduced simultaneously using a kanamycin (nptII) selectable marker gene. The second approach involved the sequential introduction (re-transformation) of a cry1Ac9 gene, using a hygromycin resistance (hpt) selectable marker gene, into an existing line transgenic for a cry9Aa2 gene and a kanamycin resistance (nptII) selectable marker gene. Multiplex polymerase chain reaction (PCR) confirmed the presence of the specific selectable marker gene and both cry genes in all regenerated lines. The relative steady-state level of the cry gene transcripts in leaves was quantified in all regenerated lines by real-time PCR analysis. Re-transformation proved to be a flexible approach to effectively pyramid genes for PTM resistance in potato, since it allowed the second gene to be added to a line that was previously identified as having a high level of resistance. Larval growth of PTM was significantly inhibited on excised greenhouse-grown leaves in all transgenic lines, although no lines expressing both cry genes exhibited any greater resistance to PTM larvae over that previously observed for the individual genes. It is anticipated that these lines will permit more durable resistance by delaying the opportunities for PTM adaptation to the individual cry genes.