• Title/Summary/Keyword: Sol-gel coating

Search Result 622, Processing Time 0.039 seconds

Influence of Yb2O3 Doping Amount on Screen-printed Barium Strontium Calcium Titanate Thick Films

  • Noh, Hyun-Ji;Lee, Sung-Gap;Ahn, Byeong-Lib;Lee, Ju
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.241-245
    • /
    • 2007
  • [ $(Ba_{0.9-x}Sr_xCa_{0.10})TiO_3$ ] (x=0.33, 0.36) powders were prepared by sol-gel method. $(Ba,Sr,Ca)TiO_3$(BSCT) thick films, undoped and doped with $MnCO_3$ and $Yb_2O_3(0.1{\sim}0.7mol%)$, were fabricated by the screen printing method on the alumina substrate. The coating and drying procedure was repeated 6-times. The Pt bottom electrode was screen printing method on the alumina substrate. These BSCT thick films were annealed at $1420^{\circ}C$ for 2 hr in atmosphere. The upper electrodes were fabricated by screen printing the Ag paste and then firing at $590^{\circ}C$ for 10 min. And then the structured and dielectric properties as a function of the doping amount of $Yb_2O_3$ were studied. As a result of the TG-DTA, exothermic peak was observed at around $670^{\circ}C$ due to the formation of the polycrystalline perovskite phase. All BSCT thick films showed XRD patterns of typical cubic peroveskite structure. The average thickness of BSCT thick films was about $70^{\mu}m$. The curie temperature and the dielectric constant decreased with increasing $Yb_2O_3$ doped content and the relative dielectric constant of the specimen, doped with 0.5 mol% $Yb_2O_3$ at BSCT(54/36/10), showed a best value of 5018 at curie temperature.

Properties of ZnO:Al Films Prepared by Spin Coating of Aged Precursor Solution

  • Shrestha, Shankar Prasad;Ghimire, Rishi;Nakarmi, Jeevan Jyoti;Kim, Young-Sung;Shrestha, Sabita;Park, Chong-Yun;Boo, Jin-Hyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.112-115
    • /
    • 2010
  • Transparent conducting undoped and Al impurity doped ZnO films were deposited on glass substrate by spin coat technique using 24 days aged ZnO precursor solution with solution of ethanol and diethanolamine. The films were characterized by UV-Visible spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), electrical resistivity ($\rho$), carrier concentration (n), and hall mobility ($\mu$) measurements. XRD data show that the deposited film shows polycrystalline nature with hexagonal wurtzite structure with preferential orientation along (002) crystal plane. The SEM images show that surface morphology, porosity and grain sizes are affected by doping concentration. The Al doped samples show high transmittance and better resistivity. With increasing Al concentration only mild change in optical band gap is observed. Optical properties are not affected by aging of parent solution. A lowest resistivity ($8.5 \times 10^{-2}$ ohm cm) is observed at 2 atomic percent (at.%) Al. With further increase in Al concentration, the resistivity started to increase significantly. The decrease resistivity with increasing Al concentration can be attributed to increase in both carrier concentration and hall mobility.

Metal-Semiconductor Contact Behavior of Solution-Processed ZnSnO Thin Film Transistors (용액법으로 제작된 ZnSnO 박막트랜지스터의 전극 물질에 따른 계면 접촉특성 연구)

  • Jeong, Young-Min;Song, Keun-Kyu;Woo, Kyoo-Hee;Jun, Tae-Hwan;Jung, Yang-Ho;Moon, Joo-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.401-407
    • /
    • 2010
  • We studied the influence of different types of metal electrodes on the performance of solution-processed zinc tin oxide (ZTO) thin-film transistors. The ZTO thin-film was obtained by spin-coating the sol-gel solution made from zinc acetate and tin acetate dissolved in 2-methoxyethanol. Various metals, Al, Au, Ag and Cu, were used to make contacts with the solution-deposited ZTO layers by selective deposition through a metal shadow mask. Contact resistance between the metal electrode and the semiconductor was obtained by a transmission line method (TLM). The device based on an Al electrode exhibited superior performance as compared to those based on other metals. Kelvin probe force microscopy (KPFM) allowed us to measure the work function of the oxide semiconductor to understand the variation of the device performance as a function of the types metal electrode. The solution-processed ZTO contained nanopores that resulted from the burnout of the organic species during the annealing. This different surface structure associated with the solution-processed ZTO gave a rise to a different work function value as compared to the vacuum-deposited counterpart. More oxygen could be adsorbed on the nanoporous solution-processed ZTO with large accessible surface areas, which increased its work function. This observation explained why the solution-processed ZTO makes an ohmic contact with the Al electrode.

Synthesis and Surface Properties of Hierarchical SiO2 Coating Layers by Forming Au Nanoparticles (금 나노입자 형성을 이용한 계층구조 SiO2 코팅층의 제조 및 표면 특성)

  • Kim, Ji Yeong;Kim, Eun-Kyeong;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • Superhydrophobic $SiO_2$ layers with a micro-nano hierarchical surface structure were prepared. $SiO_2$ layers deposited via an electrospray method combined with a sol-gel chemical route were rough on the microscale. Au particles were decorated on the surface of the microscale-rough $SiO_2$ layers by use of the photo-reduction process with different intensities ($0.11-1.9mW/cm^2$) and illumination times (60-240 sec) of ultraviolet light. With the aid of nanoscale Au nanoparticles, this consequently resulted in a micro-nano hierarchical surface structure. Subsequent fluorination treatment with a solution containing trichloro(1H,2H,2H,2H-perfluorooctyl)silane fluorinated the hierarchical $SiO_2$ layers. The change in surface roughness factor was in good agreement with that observed for the water contact angle, where the surface roughness factor developed as a measure needed to evaluate the degree of surface roughness. The resulting $SiO_2$ layers revealed excellent repellency toward various liquid droplets with different surface tensions ranging from 46 to 72.3 mN/m. Especially, the micro-nano hierarchical surface created at an illumination intensity of $0.11mW/cm^2$ and illumination time of 60 sec showed the largest water contact angle of $170^{\circ}$. Based on the Cassie-Baxter and Young-Dupre equations, the surface fraction and work of adhesion for the micronano hierarchical $SiO_2$ layers were evaluated. The work of adhesion was estimated to be less than $3{\times}10^{-3}N/m$ for all the liquid droplets. This exceptionally small work of adhesion is likely to be responsible for the strong repellency of the liquids to the micro-nano hierarchical $SiO_2$ layers.

TiO2-SiO2 Nanocomposite Fibers Prepared by Electrospinning of Ti-PCS Mixed Solution (Ti-PCS 혼합용액의 전기방사를 통해 제조된 TiO2-SiO2 나노복합 섬유)

  • Shin, Dong-Geun;Jin, Eun-Ju;Lee, Yoon-Joo;Kwon, Woo-Tek;Kim, Younghee;Kim, Soo-Ryong;Riu, Doh-Hyung
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.276-281
    • /
    • 2015
  • Nanostructured $TiO_2-SiO_2$ materials have widely been used as anti-reflecting coating, optical-chemical sensors and catalysts because of their superior optical and thermal properties as well as chemical durability. Web type $SiO_2$ microfibers with nano-crystalline $TiO_2$ were prepared by electrospinning of Ti-PCS mixed solution and oxidation controlled heat-treatment, rather simple than sol-gel process. Nano-crystalline anatase phase were formed for the heat-treatment up to $1200^{\circ}C$ and they were finely dispersed in the amorphous $SiO_2$ matrix.

The Preparation and Characterization of Bismuth Layered Ferroelectric Thin Films by Sol-Gel Process (II. Dielectric Properties of Ferroelectric $Sr_{0.7}/B_{2.3}(Ta_{1-x}Nb_x)_2O_9$ Thin Films Prepared by MOD Process) (솔 - 젤법을 이용한 Bismuth Layered Structure를 가진 강유진성 박막의 제조 및 특성평가에 관한 연구 (II. MOD법으로 제조한 강유전성 $Sr_{0.7}/B_{2.3}(Ta_{1-x}Nb_x)_2O_9$ 박막의 유전특성))

  • 최무용;송석표;정병직;김병호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.12 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • Ferroelectric $Sr_{0.7}/B_{2.3}(Ta_{1-x}Nb_x)_2O_9$(x=0, 0.1, 0.2, 0.3) thin films were deposited on $Pt/SiO_2/Si$ substrate by MOD(Metalorganic Decomposition) process. Metal carboxylate and metal alkoxide were used as precursors, and 2-methoxyethanol, xylene as solvents. After spin coating, thin films were pre-annealed at $400^{\circ}C$, followed by RTA(Rapid Thermal Annealing) and final annealing at $800^{\circ}C$ in oxygen atmosphere. These procedures were repeated three times to obtain thin films with the thickness of $2000{\AA}$. To enhance the nucleation and growth of layered-perovskite phase, thin films were rapid-thermally annealed above $720^{\circ}C$ in oxygen atmosphere. As RTA temperature increased, fluorite phase was transformed to layered-perovskite phase. And the change of Nb contents affected dielectric / electrical properties and microstructure. The ferroelectric characteristics of $Sr_{0.7}/B_{2.3}(Ta_{1-x}Nb_x)_2O_9$ thin film were Pr=8.67 $\mu{C}/cm^2$, Ec=62.4kV/cm and $I_{L}=1.4\times10^{-7}A/cm^2$ at the applied voltage of 5V, respectively.

  • PDF

Synthesis and Characterization of Spherical SiO2@Y2O3 : Eu Core-Shell Composite Phosphors (구형 SiO2@Y2O3: Eu 코어-쉘 복합체 형광체 합성 및 특성)

  • Song, Woo-Seuk;Yang, Hee-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.447-453
    • /
    • 2011
  • The monodisperse spherical $SiO_2$ particles were overcoated with $Y_2O_3:Eu^{3+}$ phosphor layers via a Pechini sol-gel process and the resulting $SiO_2@Y_2O_3:Eu^{3+}$ core-shell phosphors were subsequently annealed at $800^{\circ}C$ at an ambient atmosphere. The crystallographic structure, morphology, and luminescent property of core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and photoluminescence (PL). The spherical, nonagglomerated $SiO_2$ particles prepared by a Stober method exhibited a relatively narrow size distribution in the range of 260-300 nm. The thickness of phosphor shell layer in the core-shell particles can be facilely controlled by varying the coating number of $Y_2O_3:Eu^{3+}$ phosphors. The core-shell structured $SiO_2@Y_2O_3:Eu^{3+}$ phosphors showed a strong red emission, which was dominated by the $^5D_0-^7F_2$ transition (610 nm) of $Eu^{3+}$ ion under the ultraviolet excitation (263 nm). The PL emission properties of $SiO_2@Y_2O_3:Eu^{3+}$ phosphors were also compared with pure $Y_2O_3:Eu^{3+}$ nanophosphors.

Solution-processed Dielectric and Quantum Dot Thin Films for Electronic and Photonic Applications

  • Jeong, Hyeon-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.37-37
    • /
    • 2010
  • Silicate-silsesquioxane or siloxane-silsesquioxane hybrid thin films are strong candidates as matrix materials for ultra low dielectric constant (low-k) thin films. We synthesized the silicate-silsesquioxane hybrid resins from tetraethoxyorthosilicate (TEOS) and methyltrimethoxysilane (MTMS) through hydrolysis and condensation polymerization by changing their molar ratios ([TEOS]:[MTMS] = 7:3, 5:5, and 3:7), spin-coating on Si(100) wafers. In the case of [TEOS]:[MTMS] 7:3, the dielectric permittivity value of the resultant thin film was measured at 4.30, exceeding that of the thermal oxide (3.9). This high value was thought to be due to Si-OH groups inside the film and more extensive studies were performed in terms of electronic, ionic, and orientational polarizations using Debye equation. The relationship between the mechanical properties and the synthetic conditions of the silicate-silsesquioxane precursors was also investigated. The synthetic conditions of the low-k films have to be chosen to meet both the low orientational polarization and high mechanical properties requirements. In addition, we have investigated a new solution-based approach to the synthesis of semiconducting chalcogenide films for use in thin-film transistor (TFT) devices, in an attempt to develop a simple and robust solution process for the synthesis of inorganic semiconductors. Our material design strategy is to use a sol-gel reaction to carry out the deposition of a spin-coated CdS film, which can then be converted to a xerogel material. These devices were found to exhibit n-channel TFT characteristics with an excellent field-effect mobility (a saturation mobility of ${\sim}\;48\;cm^2V^{-1}s^{-1}$) and low voltage operation (< 5 V). These results show that these semiconducting thin film materials can be used in low-cost and high-performance printable electronics.

  • PDF

Rectifying and Nitrogen Monoxide Gas Sensing Properties of a Spin-Coated ZnO/CuO Heterojunction (스핀코팅법으로 제작한 산화아연/산화구리 이종접합의 정류 및 일산화질소 가스 감지 특성)

  • Hwang, Hyeonjeong;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.84-89
    • /
    • 2016
  • We present the rectifying and nitrogen monoxide (NO) gas sensing properties of an oxide semiconductor heterostructure composed of n-type zinc oxide (ZnO) and p-type copper oxide thin layers. A CuO thin layer was first formed on an indium-tin-oxide-coated glass substrate by sol-gel spin coating method using copper acetate monohydrate and diethanolamine as precursors; then, to form a p-n oxide heterostructure, a ZnO thin layer was spin-coated on the CuO layer using copper zinc dihydrate and diethanolamine. The crystalline structures and microstructures of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy. The observed current-voltage characteristics of the p-n oxide heterostructure showed a non-linear diode-like rectifying behavior at various temperatures ranging from room temperature to $200^{\circ}C$. When the spin-coated ZnO/CuO heterojunction was exposed to the acceptor gas NO in dry air, a significant increase in the forward diode current of the p-n junction was observed. It was found that the NO gas response of the ZnO/CuO heterostructure exhibited a maximum value at an operating temperature as low as $100^{\circ}C$ and increased gradually with increasing of the NO gas concentration up to 30 ppm. The experimental results indicate that the spin-coated ZnO/CuO heterojunction structure has significant potential applications for gas sensors and other oxide electronics.

H2S tolerance effects of Ce0.8Sm0.2O2-δ modification on Sr0.92Y0.08Ti1-xNixO3-δ anode in solid oxide fuel cells

  • Kim, Kab In;Kim, Hee Su;Kim, Hyung Soon;Yun, Jeong Woo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.187-195
    • /
    • 2018
  • $Sr_{0.92}Y_{0.08}Ti_{1-x}Ni_xO_{3-{\delta}}$ (SYTN) was investigated in the presence of $H_2S$ containing fuels to assess the feasibility of employing oxide materials as alternative anodes. Aliovalent substitution of $Ni^{2+}$ into $Ti^{4+}$ increased the ionic conductivity of perovskite, leading to improved electrochemical performance of the SYTN anode. The maximum power densities were 32.4 and $45.3mW/cm^2$ in $H_2$ at $900^{\circ}C$ for the SYT anode and the SYTN anode, respectively. However, the maximum power densities in 300 ppm of $H_2S$ decreased by 7% and by 46% in the SYT and the SYTN anodes, respectively. To enhance the sulfur tolerance and to improve the electrochemical properties, the surface of SYTN anode was modified with samarium doped ceria (SDC) using the sol-gel coating method. For the SDC-modified SYTN anode, the cell performance was mostly recovered in the pure $H_2$ condition after 500-ppm $H_2S$ exposure in contrast to the irreversible cell performance degradation exhibited in the unmodified SYTN anode.