DOI QR코드

DOI QR Code

H2S tolerance effects of Ce0.8Sm0.2O2-δ modification on Sr0.92Y0.08Ti1-xNixO3-δ anode in solid oxide fuel cells

  • Kim, Kab In (School of Chemical Engineering, Chonnam National University) ;
  • Kim, Hee Su (Department of Green Technology Research, Korea Construction Equipment Technology Institute) ;
  • Kim, Hyung Soon (School of Chemical Engineering, Chonnam National University) ;
  • Yun, Jeong Woo (School of Chemical Engineering, Chonnam National University)
  • Received : 2018.01.25
  • Accepted : 2018.07.26
  • Published : 2018.12.25

Abstract

$Sr_{0.92}Y_{0.08}Ti_{1-x}Ni_xO_{3-{\delta}}$ (SYTN) was investigated in the presence of $H_2S$ containing fuels to assess the feasibility of employing oxide materials as alternative anodes. Aliovalent substitution of $Ni^{2+}$ into $Ti^{4+}$ increased the ionic conductivity of perovskite, leading to improved electrochemical performance of the SYTN anode. The maximum power densities were 32.4 and $45.3mW/cm^2$ in $H_2$ at $900^{\circ}C$ for the SYT anode and the SYTN anode, respectively. However, the maximum power densities in 300 ppm of $H_2S$ decreased by 7% and by 46% in the SYT and the SYTN anodes, respectively. To enhance the sulfur tolerance and to improve the electrochemical properties, the surface of SYTN anode was modified with samarium doped ceria (SDC) using the sol-gel coating method. For the SDC-modified SYTN anode, the cell performance was mostly recovered in the pure $H_2$ condition after 500-ppm $H_2S$ exposure in contrast to the irreversible cell performance degradation exhibited in the unmodified SYTN anode.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. B.C.H. Steele, A. Heinzel, Nature 414 (2001) 345. https://doi.org/10.1038/35104620
  2. D.L. Vu, C.G. Lee, Korean J. Chem. Eng. 33 (2016) 1606. https://doi.org/10.1007/s11814-016-0016-7
  3. S. Park, J.M. Vohs, R.J. Gorte, Nature 404 (2000) 256. https://doi.org/10.1038/35005011
  4. E.P. Murray, T. Tsai, S.A. Barnett, Nature 400 (1999) 649. https://doi.org/10.1038/23220
  5. D.K. Niakolas, Appl. Catal. A: Gen. 486 (2014) 123. https://doi.org/10.1016/j.apcata.2014.08.015
  6. Z. Zhan, S.A. Barnett, Science 308 (2005) 844. https://doi.org/10.1126/science.1109213
  7. R.J. Gorte, J.M. Vohs, J. Catal. 216 (2003) 477. https://doi.org/10.1016/S0021-9517(02)00121-5
  8. S. Mclntosh, R.J. Gorte, Chem. Rev. 104 (2004) 4845. https://doi.org/10.1021/cr020725g
  9. J.P. Trembly, A.I. Marquez, T.R. Ohrn, D.J. Bayless, J. Power Sources 158 (2006) 263. https://doi.org/10.1016/j.jpowsour.2005.09.055
  10. J.F.B. Rasmussen, A. Hagen, J. Power Sources 191 (2009) 534. https://doi.org/10.1016/j.jpowsour.2009.02.001
  11. Z.U. Din, Z.A. Zainal, Renew. Sust. Energy Rev. 72 (2017) 1050. https://doi.org/10.1016/j.rser.2016.10.012
  12. M. Gong, X. Liu, J. Trembly, C. Johnson, J. Power Sources 168 (2007) 289. https://doi.org/10.1016/j.jpowsour.2007.03.026
  13. K. Haga, S. Adachi, Y. Shiratori, K. Itoh, K. Sasaki, Solid State Ion. 179 (2008) 1427. https://doi.org/10.1016/j.ssi.2008.02.062
  14. C. Yates, J. Winnick, J. Electrochem. Soc. 146 (1999) 2841. https://doi.org/10.1149/1.1392017
  15. M. Liu, G. Wei, J. Luo, A.R. Sanger, K.T. Chuang, J. Electrochem. Soc. 150 (2003) A1025. https://doi.org/10.1149/1.1583715
  16. R.J. Gorte, H. Kim, J.M. Vohs, J. Power Sources 1-2 (2002) 10.
  17. M. Flytzani-Stephanopoulos, M. Sakbodin, Z. Wang, Science 312 (2006) 1508. https://doi.org/10.1126/science.1125684
  18. H. Devianto, S.P. Yoon, S.W. Nam, J. Han, T.H. Lim, J. Power Sources 159 (2006) 1147. https://doi.org/10.1016/j.jpowsour.2005.11.092
  19. H. He, R.J. Gorte, J.M. Vohs, Electrochem. Solid State Lett. 8 (2005) A279. https://doi.org/10.1149/1.1896469
  20. J.W. Yun, S.P. Yoon, J. Han, S. Park, H.S. Kim, S.W. Nam, J. Electrochem. Soc. 157 (2010) B1825. https://doi.org/10.1149/1.3499215
  21. J.W. Yun, H.C. Ham, H.S. Kim, S.A. Song, S.W. Nam, S.P. Yoon, J. Electrochem. Soc. 160 (2013) F153. https://doi.org/10.1149/2.071302jes
  22. J.W. Park, K.T. Lee, J. Ind. Eng. Chem. 60 (2018) 505. https://doi.org/10.1016/j.jiec.2017.11.039
  23. Y. Li, Z. Wang, J. Li, X. Zhu, Y. Zhang, X. Huang, Y. Zhou, L. Zhu, Z. Lu, J. Alloy. Compd. 698 (2017) 794. https://doi.org/10.1016/j.jallcom.2016.12.313
  24. O.A. Marina, N.L. Canfield, J.W. Stevenson, Solid State Ion. 149 (2002) 21. https://doi.org/10.1016/S0167-2738(02)00140-6
  25. X.W. Zhou, N. Yan, K.T. Chuang, J.L. Luo, RSC Adv. 4 (2014) 118. https://doi.org/10.1039/C3RA42666A
  26. Y.Q. Li, Y.H. Zhang, X.B. Zhu, Z.H. Wang, Z. Lu, X.Q. Huang, Y.J. Zhou, L. Zhu, W. Jiang, J. Power Sources 285 (2015) 354. https://doi.org/10.1016/j.jpowsour.2015.03.127
  27. Z. Han, Y. Wang, Y. Yang, L. Li, Z. Yang, M. Han, J. Alloy. Compd. 703 (2017) 258. https://doi.org/10.1016/j.jallcom.2017.01.341
  28. T.G. Howell, C.P. Kuhnell, T.L. Reitz, A.M. Sukeshini, R.N. Singh, J. Power Sources 231 (2013) 279. https://doi.org/10.1016/j.jpowsour.2013.01.004
  29. L. Xu, Y.M. Yin, N. Zhou, Z. Wang, Z.F. Ma, Electrochem. Commun. 76 (2017) 51. https://doi.org/10.1016/j.elecom.2017.01.017
  30. E.K. Park, S. Lee, J.W. Yun, Appl. Surf. Sci. 429 (2018) 171. https://doi.org/10.1016/j.apsusc.2017.07.284
  31. H. Ding, A.V. Virkar, M. Liu, F. Liu, Phys. Chem. Chem. Phys. 15 (2013) 489. https://doi.org/10.1039/C2CP43148C
  32. W.C. Jung, H.L. Tuller, Energy Environ. Sci. 5 (2012) 5370. https://doi.org/10.1039/C1EE02762J
  33. S. Hui, A. Petric, J. Electrochem. Soc. 149 (2002) J1. https://doi.org/10.1149/1.1420706
  34. J.D. Kim, G.D. Kim, J.W. Moon, Y. Park, W.H. Lee, K. Kobayahshi, M. Nagai, C.E. Kim, Solid State Ion. 143 (2001) 379. https://doi.org/10.1016/S0167-2738(01)00877-3
  35. H. Madi, S. Diethelm, C. Ludwig, J.V. Herle, Int. J. Hydrog. Energy 41 (2016) 12231. https://doi.org/10.1016/j.ijhydene.2016.06.014
  36. D. Papargyriou, J.T.S. Irvine, Solid State Ion. 288 (2016) 120. https://doi.org/10.1016/j.ssi.2015.11.007
  37. J.W. Yun, S.P. Yoon, S. Park, H.S. Kim, S.W. Nam, Int. J. Hydrogen Energy 36 (2011) 787. https://doi.org/10.1016/j.ijhydene.2010.10.060
  38. J.W. Yun, S.P. Yoon, H.S. Kim, J. Han, S.W. Nam, Int. J. Hydrogen Energy 37 (2012) 4356. https://doi.org/10.1016/j.ijhydene.2011.11.148
  39. J.M. Lee, J.W. Yun, Ceram. Int. 42 (2016) 8698. https://doi.org/10.1016/j.ceramint.2016.02.104
  40. J.M. Lee, Y.G. Kim, S.J. Lee, H.S. Kim, S.P. Yoon, S.W. Nam, S.D. Yoon, J.W. Yun, J. Appl. Electrochem. 44 (2014) 581. https://doi.org/10.1007/s10800-014-0670-6

Cited by

  1. Preparation of Straw Porous Biochars by Microwave-Assisted KOH Activation for Removal of Gaseous H2S vol.35, pp.22, 2018, https://doi.org/10.1021/acs.energyfuels.1c02241
  2. Impact of syngas from biomass gasification on solid oxide fuel cells: A review study for the energy transition vol.250, pp.None, 2021, https://doi.org/10.1016/j.enconman.2021.114894