Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.07.045

H2S tolerance effects of Ce0.8Sm0.2O2-δ modification on Sr0.92Y0.08Ti1-xNixO3-δ anode in solid oxide fuel cells  

Kim, Kab In (School of Chemical Engineering, Chonnam National University)
Kim, Hee Su (Department of Green Technology Research, Korea Construction Equipment Technology Institute)
Kim, Hyung Soon (School of Chemical Engineering, Chonnam National University)
Yun, Jeong Woo (School of Chemical Engineering, Chonnam National University)
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 187-195 More about this Journal
Abstract
$Sr_{0.92}Y_{0.08}Ti_{1-x}Ni_xO_{3-{\delta}}$ (SYTN) was investigated in the presence of $H_2S$ containing fuels to assess the feasibility of employing oxide materials as alternative anodes. Aliovalent substitution of $Ni^{2+}$ into $Ti^{4+}$ increased the ionic conductivity of perovskite, leading to improved electrochemical performance of the SYTN anode. The maximum power densities were 32.4 and $45.3mW/cm^2$ in $H_2$ at $900^{\circ}C$ for the SYT anode and the SYTN anode, respectively. However, the maximum power densities in 300 ppm of $H_2S$ decreased by 7% and by 46% in the SYT and the SYTN anodes, respectively. To enhance the sulfur tolerance and to improve the electrochemical properties, the surface of SYTN anode was modified with samarium doped ceria (SDC) using the sol-gel coating method. For the SDC-modified SYTN anode, the cell performance was mostly recovered in the pure $H_2$ condition after 500-ppm $H_2S$ exposure in contrast to the irreversible cell performance degradation exhibited in the unmodified SYTN anode.
Keywords
$Sr_{0.92}Y_{0.08}Ti_{1-x}Ni_xO_{3-{\delta}}$; $H_2S$ poisoning; Alternative anode; Perovskite; $Ce_{0.8}Sm_{0.2}O_2$ modification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B.C.H. Steele, A. Heinzel, Nature 414 (2001) 345.   DOI
2 Y.Q. Li, Y.H. Zhang, X.B. Zhu, Z.H. Wang, Z. Lu, X.Q. Huang, Y.J. Zhou, L. Zhu, W. Jiang, J. Power Sources 285 (2015) 354.   DOI
3 Z. Han, Y. Wang, Y. Yang, L. Li, Z. Yang, M. Han, J. Alloy. Compd. 703 (2017) 258.   DOI
4 T.G. Howell, C.P. Kuhnell, T.L. Reitz, A.M. Sukeshini, R.N. Singh, J. Power Sources 231 (2013) 279.   DOI
5 L. Xu, Y.M. Yin, N. Zhou, Z. Wang, Z.F. Ma, Electrochem. Commun. 76 (2017) 51.   DOI
6 E.K. Park, S. Lee, J.W. Yun, Appl. Surf. Sci. 429 (2018) 171.   DOI
7 H. Ding, A.V. Virkar, M. Liu, F. Liu, Phys. Chem. Chem. Phys. 15 (2013) 489.   DOI
8 W.C. Jung, H.L. Tuller, Energy Environ. Sci. 5 (2012) 5370.   DOI
9 S. Hui, A. Petric, J. Electrochem. Soc. 149 (2002) J1.   DOI
10 J.D. Kim, G.D. Kim, J.W. Moon, Y. Park, W.H. Lee, K. Kobayahshi, M. Nagai, C.E. Kim, Solid State Ion. 143 (2001) 379.   DOI
11 D.L. Vu, C.G. Lee, Korean J. Chem. Eng. 33 (2016) 1606.   DOI
12 S. Park, J.M. Vohs, R.J. Gorte, Nature 404 (2000) 256.   DOI
13 E.P. Murray, T. Tsai, S.A. Barnett, Nature 400 (1999) 649.   DOI
14 D.K. Niakolas, Appl. Catal. A: Gen. 486 (2014) 123.   DOI
15 Z. Zhan, S.A. Barnett, Science 308 (2005) 844.   DOI
16 R.J. Gorte, J.M. Vohs, J. Catal. 216 (2003) 477.   DOI
17 S. Mclntosh, R.J. Gorte, Chem. Rev. 104 (2004) 4845.   DOI
18 J.P. Trembly, A.I. Marquez, T.R. Ohrn, D.J. Bayless, J. Power Sources 158 (2006) 263.   DOI
19 H. Madi, S. Diethelm, C. Ludwig, J.V. Herle, Int. J. Hydrog. Energy 41 (2016) 12231.   DOI
20 D. Papargyriou, J.T.S. Irvine, Solid State Ion. 288 (2016) 120.   DOI
21 J.W. Yun, S.P. Yoon, S. Park, H.S. Kim, S.W. Nam, Int. J. Hydrogen Energy 36 (2011) 787.   DOI
22 J.W. Yun, S.P. Yoon, H.S. Kim, J. Han, S.W. Nam, Int. J. Hydrogen Energy 37 (2012) 4356.   DOI
23 J.M. Lee, J.W. Yun, Ceram. Int. 42 (2016) 8698.   DOI
24 J.M. Lee, Y.G. Kim, S.J. Lee, H.S. Kim, S.P. Yoon, S.W. Nam, S.D. Yoon, J.W. Yun, J. Appl. Electrochem. 44 (2014) 581.   DOI
25 K. Haga, S. Adachi, Y. Shiratori, K. Itoh, K. Sasaki, Solid State Ion. 179 (2008) 1427.   DOI
26 J.F.B. Rasmussen, A. Hagen, J. Power Sources 191 (2009) 534.   DOI
27 Z.U. Din, Z.A. Zainal, Renew. Sust. Energy Rev. 72 (2017) 1050.   DOI
28 M. Gong, X. Liu, J. Trembly, C. Johnson, J. Power Sources 168 (2007) 289.   DOI
29 C. Yates, J. Winnick, J. Electrochem. Soc. 146 (1999) 2841.   DOI
30 M. Liu, G. Wei, J. Luo, A.R. Sanger, K.T. Chuang, J. Electrochem. Soc. 150 (2003) A1025.   DOI
31 R.J. Gorte, H. Kim, J.M. Vohs, J. Power Sources 1-2 (2002) 10.
32 M. Flytzani-Stephanopoulos, M. Sakbodin, Z. Wang, Science 312 (2006) 1508.   DOI
33 H. Devianto, S.P. Yoon, S.W. Nam, J. Han, T.H. Lim, J. Power Sources 159 (2006) 1147.   DOI
34 H. He, R.J. Gorte, J.M. Vohs, Electrochem. Solid State Lett. 8 (2005) A279.   DOI
35 J.W. Yun, S.P. Yoon, J. Han, S. Park, H.S. Kim, S.W. Nam, J. Electrochem. Soc. 157 (2010) B1825.   DOI
36 J.W. Yun, H.C. Ham, H.S. Kim, S.A. Song, S.W. Nam, S.P. Yoon, J. Electrochem. Soc. 160 (2013) F153.   DOI
37 J.W. Park, K.T. Lee, J. Ind. Eng. Chem. 60 (2018) 505.   DOI
38 Y. Li, Z. Wang, J. Li, X. Zhu, Y. Zhang, X. Huang, Y. Zhou, L. Zhu, Z. Lu, J. Alloy. Compd. 698 (2017) 794.   DOI
39 O.A. Marina, N.L. Canfield, J.W. Stevenson, Solid State Ion. 149 (2002) 21.   DOI
40 X.W. Zhou, N. Yan, K.T. Chuang, J.L. Luo, RSC Adv. 4 (2014) 118.   DOI