• Title/Summary/Keyword: Sol-Gel Method 졸-겔법

Search Result 224, Processing Time 0.03 seconds

Synthesis of TiO2 Fine Powder by Sol-Gel Process and Reaction Mechanism(II) : Hydrolysis of Titanium n-Propoxide (졸-겔법에 의한 TiO2미분말 합성과 반응메카니즘(II): Titanium n-propoxide의 가수분해)

  • Myung, Jung-Jae;Park, Jin-koo;Chung, Yong-Sun;Kyong, Jin-Bum;Kim, Ho-Kun
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.777-783
    • /
    • 1997
  • $TiO_2$ powders were synthesized via hydrolysis reaction of titanium n-propoxide in n-propanol solvent and the reaction rates were studied by use of UV-vis spectroscopic method. Concentration of water, reaction temperature, reaction time and acid-base effects of the solution were investigated to determine the optimum conditions for $TiO_2$ powder synthesis. The reaction were controlled to proceed to pseudo-first orders reaction in the presence of excess water in n-propanol solvent. The rate constants which varied with temperature and concentration of water were calculated by Guggenheim method. Reaction using $D_2O$ was also carried out to determine the catalytic character of water. $TiO_2$ powders were synthesized only in the neutral and basic solution and those were almost spheric forms having average particle size of $0.4-0.7{\mu}m$ diameter. Particle size decreased with increasing concentration of water and reaction temperature, however, increased with increasing reaction time. Associative $S_N2$ mechanism for the hydrolysis was proposed from the data of n-value in the transition state and thermodynamic parameter. $D_2O$ solvent isotope effect showed that $H_2O$ molecules reacted as nucleophilic catalysis.

  • PDF

Mössbauer Study of Tb2Bi1GaxFe5-xO12(x=0, 1) (Tb2Bi1GaxFe5-xO12(x=0, 1)의 뫼스바우어 분광연구)

  • Park, Il-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.67-70
    • /
    • 2008
  • $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) fabricated by sol-gel and vacuum sealed annealing process. $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) have been studied by x-ray diffraction(XRD), vibrating sample magnetometer, and $M\ddot{o}ssbauer$ spectroscopy. The crystal structures were found to be a cubic garnet structure with space group Ia3d. The determined lattice constants $a_0$ of x = 0, and 1 are $12.497\AA$, and $12.465\AA$, respectively. The distribution of gallium and iron in $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$ is studied by Rietveld refinement. Based on Rietveld refinement results, the terbium and bismuth ions occupy the 24c site, iron ions occupy the 24d, l6a site, and nonmagmetic gallium ions occupy the 16a site. In order to verify the magnetic site occupancy of iron and gallium, we have taken $M\ddot{o}ssbauer$ spectra for $Tb_2Bi_1Ga_xFe_{5-x}O_{12}$(x=0, 1) at room temperature. From the results of $M\ddot{o}ssbauer$ spectra analysis, the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 60.8 % and 39.2 %, respectively, and the absorption area ratios of Fe ions for $Tb_2Bi_1Fe_5O_{12}$ on 24d and 16a sites are 74.7 % and 25.3 %, respectively. It is noticeable that all of the nonmagnetic Ga atoms occupy the 16a site by vacuum annealing process.

Synthesis of Sludge Waste-derived Semiconductor Grade Uniform Colloidal Silica Nanoparticles and Their CMP Application (슬러지 폐기물을 활용한 반도체급 균일한 콜로이달 실리카 나노입자의 제조 및 CMP 응용)

  • Kim, Dong Hyun;Kim, Jiwon;Jekal, Suk;Kim, Min Jeong;Kim, Ha-Yeong;Kim, Min Sang;Kim, Sang-Chun;Park, Seon-Young;Yoon, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.3
    • /
    • pp.5-12
    • /
    • 2022
  • This study suggests the effective recycling method of sludge waste from various industrial fields to synthesize uniform colloidal silica nanoparticles. In detail, polymers are removed from the sludge waste to attain sludge-extracted silica (s-SiO2) micron-sized particles, and ammonia assisted sonication is applied to s-SiO2, which has effectively extracted the silanol precursor. The nano-sized silica (n-SiO2) particles are successfully synthesized by a typical sol-gel method using silanol precursor. Also, the yield amounts of n-SiO2 are determined by the function of s-SiO2 etching time. Finally, n-SiO2-based slurry is synthesized for the practical CMP application. As a result, rough-surfaced semiconductor chip is successfully polished by the n-SiO2-based slurry to exhibit the mirror-like clean surface. In this regard, sludge wastes are successfully prepared as valuable semicondutor grade materials.

Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry (반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용)

  • Ha-Yeong Kim;Yeon-Ryong Chu;Gyu-Sik Park;Jisu Lim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In this study, EMC(Epoxy molding compound) waste from the semiconductor molding process is recycled and synthesized into silica nanoparticles, which are then applied as abrasive materials contains CMP(Chemical mechanical polishing) slurry. Specifically, silanol precursor is extracted from EMC waste according to the ultra-sonication method, which provides heat and energy, using ammonia solution as an etchant. By employing as-extracted silanol via a facile sol-gel process, uniform silica nanoparticles(e-SiO2, experimentally synthesized SiO2) with a size of ca. 100nm are successfully synthesized. Through physical and chemical analysis, it was confirmed that e-SiO2 has similar properties compared to commercially available SiO2(c-SiO2, commercially SiO2). For practical CMP applications, CMP slurry is prepared using e-SiO2 as an abrasive and tested by polishing a semiconductor chip. As a result, the scratches that are roughly on the surface of the chip are successfully removed and turned into a smooth surface. Hence, the results present a recycling method of EMC waste into silica nanoparticles and the application to high-quality CMP slurry for the polishing process in semiconductor packaging.

Preparation and Photosensitivity of Ag-Multi Walled Carbon Nanotube-TiO2 Nano Composite (Ag-Multi walled carbon nanotube-TiO2 복합나노소재 제조 및 광감응성)

  • Kim, Sung-Pil;Kim, Jong-Oh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.5-11
    • /
    • 2016
  • $MWCNT-TiO_2$ nano composites and $Ag-MWCNT-TiO_2$ nano composites were prepared from Multi-Walled Carbon NanoTube (MWCNT), titanium (IV) butoxide (TNB) solution and silver nitrate ($AgNO_3$) by the sol-gel method. The dispersion and structure of Ag in the synthesized composites was observed by Scanning Electron Microscopy (SEM) and Field Emission Transmission Electron Microscopy (FE-TEM). X-Ray Diffraction (XRD) patterns of the composites showed that the composites contained an anatase phase. The Energy Dispersive X-ray spectroscopy (EDX) showed the presence of C, O, Ti and Ag peaks. The $TiO_2$ particles were distributed uniformly in the MWCNT network, and Ag particles were virtually fixed on the surface of the tubes. Also decomposition of the methylene blue was investigated according to UV radiation times for study photocatalytic activity. $Ag-MWCNT-TiO_2$ nano composites show high photodegradation than $MWCNT-TiO_2$ nano composites. The results indicate that the high conductivity of Ag improved the photoactivity of the $MWCNT-TiO_2$ composite.

Sol-gel Derived-highly Transparent c-axis Oriented ZnO Thin Films (졸-겔법에 의한 c-축 배향성을 가진 고투과율 ZnO 박막의 제조)

  • Lee, Young-Hwan;Jeong, Ju-Hyun;Jeon, Young-Sun;Hwang, Kyu-Seog
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 2008
  • Purpose: A simple and efficient method to prepare nanocrystalline ZnO thin film with pure strong UV emission on soda-lime-silica glass substrates by low-temperature annealing was improved. Methods: Crystal structural, surface morphological, and optical characteristics of nanocrystalline ZnO thin films deposited on soda-lime-silica glass substrates by prefiring final annealing process at 300$^{\circ}C$ were investigated by using X-ray diffraction analysis, field emission-scanning electron microscope, scanning probe microscope, ultraviolet-visible-near infrared spectrophotometer, and photoluminescence. Results: Highly c-axis-oriented ZnO films were obtained by prefiring at 300$^{\circ}C$. A high transmittance in the visible spectra range and clear absorption edge in the ultra violet range of the film was observed. The PL spectrum of ZnO thin film with a deep near band edge emission was observed while the defect-related broad green emission was nearly quenched. Conclusions: Our work will be possibly adopted to cheaply and easily fabricate ZnO-based optoelectronic devices at low temperature, below 300$^{\circ}C$, in the future.

  • PDF

The Multiferroic Properties Study of YMn2-xFexO5 (x=0.00, 0.01) by Neutron Diffraction (고 분해능 중성자 회절 실험에 의한 YMn2-xFexO5 (x = 0.00, 0.01)의 다강체 특성 연구)

  • Kim, Dong-Hyun;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.5
    • /
    • pp.183-187
    • /
    • 2007
  • Compounds of multiferroic materials $YMn_{2-x}Fe_xO_5$ (x = 0.00, 0.01) were prepared using the sol-gel method. The crystallographic, magnetic and electric properties are studied using x-ray diffraction (XRD), neutron diffraction, vibrating sample magnetometer (VSM) and physical property measurement system (PPMS). The crystalline structure of $YMn_2O_5$ was found to be orthorhombic (Pbam) at room temperature. The lattice constants of $YMn_2O_5$ were determined to be $a_0=7.275\;{\AA},\;b_0=8.487\;{\AA},\;c_0=5.674\;{\AA}$. The lattice constants not changed with Fe concentrations. Our data demonstrate the correlation of magnetic and electric properties in $YMn_2O_5$ materials.

Improvement of Structure and Electrochemical Properties of LiNi0.5Mn1.5O4 for High Voltage Class Cathode Material by Cr Substitution (Cr 치환을 이용한 고전압용 양극 활물질 LiNi0.5Mn1.5O4의 구조와 전기화학적 성능의 개선)

  • Eom, Won-Sob;Kim, Yool-Koo;Cho, Won-Il;Jang, Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.82-87
    • /
    • 2005
  • The cathode material, $LiNi_{0.5}Mn_{1.5}O_4$, for high voltage applications of Li-ion batteries exhibits impurity phases due to oxygen deficiency during the high temperature heat treatment. The impurity phase reduces the electrochemical properties of the electrode since the deficiency spinel structure disturbs the lithium ion intercalation and deintercalation. In this study, Cr-substituted $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4(0{\leq}x{\leq}0.05)$ powders are synthesized by a sol-gel method in order to reduce the amount of the impurity phases in the $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4$. Thermal analysis of the cathode material shows that the $LiNi_{0.5}Mn_{1.5}O_4$ without Cr substitution looses $2\%$ of its weight due to oxygen deficiency but the amount of weight loss is diminished when Cr is substituted. XRD analysis also supports the reduction of the impurity phases in the cathode after chromium substitution, suggesting that the improvement of the electrochemical properties such as the capacity retention and electrochemical stability are attributed to the low content of impurity phases in the Cr-substituted $LiNi_{0.5-x}Mn_{1.5}Cr_xO_4.$

Fabrication of the Conductive Fiber Coated Sb-doped SnO2 Layer (Sb-doped SnO2를 코팅한 도전성 섬유의 제조)

  • Kim, Hong-Dae;Choi, Jin-Sam;Shin, Dong-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.386-393
    • /
    • 2002
  • Fabricatio of the potassium-titanate fiber with K2O${\cdot}nTiO_2$ composition and coating of electrically conductive Sb-doped $SnO_2$ (ATO: Antimony Tin Oxide) layer on the fiber on the fiber were the fiber were the aims of this work. The fiber fabricated by slow-cooling technique showed the mean length of $15{\mu}m$ and mean diameter of $0.5{\mu}m$. Three different coating methods i.e, sol-gel, co-precipitation and urea technique, were attempted to coat the conductive ATO layer on the potassium-titanate fiber. The influences of coating method, concentrations of ATO(5∼70wt%) and Sb (0∼20wt%), temperature in the range of $450\;to\;800^{\circ}C$, number of washing (3∼4 times) on the resistivity of the ATO coated fiber were examined in details. The fiber coated ATO by coprecipitation exhibited lower resistivity of 103${\Omega}{\cdot}$cm at the 30 wt% of ATO, and showed nearly constant low value of $60{\Omega}{\cdot}cm\;to\;90{\Omega}{\cdot}$cm at the higher concentration of ATO.

Colossal Magnetoresistance and Mossbauer Studies of La-Ca-Mn-O Compound Doped with $^{57}Fe$ ($^{57}Fe$를 미량 치환한 La-Ca-Mn-O의 초거대자기저항과 Mossbauer분광학연구)

  • 박승일;김성철
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.335-340
    • /
    • 1998
  • Colossal magnetoresistance $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ material has been produced by a metal-salt routed sol-gel process method. Magnetic properties of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ have been studied with x-ray diffraction, Rutherford back-scattering spectroscopy(RBS), vibrating sample magnetometer, and Mossbauer spectroscopy. Crystalline $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ was perovskite cubic structure with a lattice parameter $a_0=3.868$\AA$$. And there was no appreciable change in the value of the lattice parameter when a small amount (x=0.01) of iron was added. However, Mossbauer and VSM data indicate the Curie temperature of the $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ decreased from 282 to 270 k and also the saturation magnetization from 84 to 81 emu/g at 77 K. Mossbauer spectra of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ have been taken at various temperatures ranging form 4.2 K to room temperature. Analysis of $^{57}Fe$ Mossbauer data in terms of the local configurations of Mn atoms has permitted the influence of the magnetic hyperfine interactions to be monitored. The isomer shifts show that the charge state of all Fe ions are ferric. The magnetoresistance of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ was about 33 % at semiconductor-metal transition temperature $T_{SC-M}=250K$.

  • PDF