• Title/Summary/Keyword: Sol-Gel Method

Search Result 1,432, Processing Time 0.034 seconds

Fabrication of the Conductive Fiber Coated Sb-doped SnO2 Layer (Sb-doped SnO2를 코팅한 도전성 섬유의 제조)

  • Kim, Hong-Dae;Choi, Jin-Sam;Shin, Dong-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.4
    • /
    • pp.386-393
    • /
    • 2002
  • Fabricatio of the potassium-titanate fiber with K2O${\cdot}nTiO_2$ composition and coating of electrically conductive Sb-doped $SnO_2$ (ATO: Antimony Tin Oxide) layer on the fiber on the fiber were the fiber were the aims of this work. The fiber fabricated by slow-cooling technique showed the mean length of $15{\mu}m$ and mean diameter of $0.5{\mu}m$. Three different coating methods i.e, sol-gel, co-precipitation and urea technique, were attempted to coat the conductive ATO layer on the potassium-titanate fiber. The influences of coating method, concentrations of ATO(5∼70wt%) and Sb (0∼20wt%), temperature in the range of $450\;to\;800^{\circ}C$, number of washing (3∼4 times) on the resistivity of the ATO coated fiber were examined in details. The fiber coated ATO by coprecipitation exhibited lower resistivity of 103${\Omega}{\cdot}$cm at the 30 wt% of ATO, and showed nearly constant low value of $60{\Omega}{\cdot}cm\;to\;90{\Omega}{\cdot}$cm at the higher concentration of ATO.

Study on Synthesis of 68GeO2 and Behavior of 68Ga3+ for Generator Column (Generator 컬럼용 68GeO2 합성 및 68Ga3+의 거동에 관한 연구)

  • Kim, Gun Gyun;Lee, Jun Young;Kim, Sang Wook;Hur, Min Gu;Yang, Seung Dae;Park, Jeong Hoon
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.189-192
    • /
    • 2016
  • $^{68}Ga$ has emerged as a promising candidate for non-invasive diagnostic imaging within Positron Emission Tomography (PET) because of its advantageous radiochemical characteristics ($t_{1/2}=68min$, ${\beta}^+$ yield ~89%). $^{68}Ga$ forms a stable chelation with various ligands and it is possible to be quickly and easily study using a $^{68}Ge/^{68}Ga$ generator. Commercial $^{68}Ge/^{68}Ga$ generators are chromatographic system using the inorganic materials such as alumina and tin dioxide which are employed as column matrixes for $^{68}Ge$. In this study, we tried out to make $^{68}Ge/^{68}Ga$ generator system with the $^{68}GeO_2$ microstructures for column matrix. $^{68}Ge$ tends to have stable bond with oxide as $^{68}GeO_2$ microstructures. The $^{68}GeO_2$ has been synthesized by hydrolysis of $GeCl_4$ (sol-gel method) and characterized by X-ray diffraction and scanning electron microscope for geometrical analysis. The stability of $GeO_2$ was tested using eluents with diverse solvents(water, ethanol and 0.1 N HCl). The radioactivity of $^{68}Ga^{3+}$ in eluate through $GeO_2$ was measured to prove a function as column material for a generator.

Colossal Magnetoresistance and Mossbauer Studies of La-Ca-Mn-O Compound Doped with $^{57}Fe$ ($^{57}Fe$를 미량 치환한 La-Ca-Mn-O의 초거대자기저항과 Mossbauer분광학연구)

  • 박승일;김성철
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.335-340
    • /
    • 1998
  • Colossal magnetoresistance $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ material has been produced by a metal-salt routed sol-gel process method. Magnetic properties of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ have been studied with x-ray diffraction, Rutherford back-scattering spectroscopy(RBS), vibrating sample magnetometer, and Mossbauer spectroscopy. Crystalline $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ was perovskite cubic structure with a lattice parameter $a_0=3.868$\AA$$. And there was no appreciable change in the value of the lattice parameter when a small amount (x=0.01) of iron was added. However, Mossbauer and VSM data indicate the Curie temperature of the $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ decreased from 282 to 270 k and also the saturation magnetization from 84 to 81 emu/g at 77 K. Mossbauer spectra of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ have been taken at various temperatures ranging form 4.2 K to room temperature. Analysis of $^{57}Fe$ Mossbauer data in terms of the local configurations of Mn atoms has permitted the influence of the magnetic hyperfine interactions to be monitored. The isomer shifts show that the charge state of all Fe ions are ferric. The magnetoresistance of $La_{0.67}Ca_{0.33}Mn_{0.99}^{57}Fe_{0.01}O_3$ was about 33 % at semiconductor-metal transition temperature $T_{SC-M}=250K$.

  • PDF

Synthesis and Electrochemical Properties of Porous Li4Ti5O12 Anode Materials (기공구조로 제조된 Li4Ti5O12 음극활물질의 전기화학적 특성)

  • Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.861-867
    • /
    • 2019
  • $Li_4Ti_5O_{12}$ is a promising next-generation anode material for lithium-ion batteries due to excellent cycle life, low irreversible capacity, and little volume expansion during charge-discharge process. However, it has poor charge capacity at high current density due to its low electrical conductivity. To improve this weakness, porous $Li_4Ti_5O_{12}$ was synthesized by sol-gel method with P123 as chelating agent. The physical characteristics of as-prepared sample was investigated by XRD, SEM, and BET analysis, and electrochemical properties were characterized by cycle performance test, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS). $Li_4Ti_5O_{12}$ synthesized by 0.01mol ratio of P123/Ti showed most unified particle size, high specific surface area, and relatively high porosity. EIS analysis showed that depressed semicircle size was remarkably reduced, which suggested resistance value in electrode was decreased. Capacity in rate performance showed 178 mAh/g at 0.2C, 170 mAh/g at 0.5C, 110 mA/h at 5C, and 90 mAh/g at 10C. Capacity retention also showed 99% after rate performance.

Gas Permeability through Mixed Matrix Membrane of Poly(dimethylsiloxane) with Aluminosilicate Hollow Nanoparticles (알루미노규산염 나노입자를 이용한 Poly(dimethylsiloxane) 복합매질 분리막의 기체투과 특성)

  • Fang, Xiaoyi;Jung, Bumsuk
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.51-60
    • /
    • 2019
  • In order to improve gas separation properties of polymeric membranes which have been widely applied in the industry field, aluminosilicate hollow nanoparticles named as allophanes were synthesized by sol-gel method and formulated in Poly(dimethylsiloxane) (PDMS) matrix to investigate the gas separation properties of PDMS membrane. Transmission electron microscope (TEM), Energy dispersive X-ray analysis (EDX), X-ray diffractometer (XRD), Surface area and pore size analyzer (BET) and Fourier transform infrared spectrophotometer (FTIR) were carried out to characterize the synthetic allophanes. Then the PDMS mixed matrix membranes were prepared by adding different volume fraction of allophanes. To examine the effect of allophanes addition in PDMS matrix using unmodified allophane and modified ones, the gas permeation experiments were performed using oxygen, nitrogen, methane and carbon dioxide. As the volume fraction of modified allophane increased up to 4.05 Vol% the permeability of four test gases through PDMS mixed matrix membranes increased. Also, the selectivity of $O_2/N_2$ and $CO_2/CH_4$ increased with the contents of the modified allophane. Further improvement of gas separation properties of PDMS mixed matrix membranes containing higher volume percent of allophanes can be expected as long as well dispersion of allophanes in PDMS matrix can be achieved for better PDMS membranes.

Application of Silicon Sludge from Semiconductor Manufacturing Process as Pigments and Paints through Titanium Dioxide Coating (반도체 제조공정에서 발생하는 실리콘 슬러지의 이산화티타늄 코팅을 통한 안료 및 도료 소재로의 응용)

  • Yeon-Ryong Chu;Minki Sa;Jiwon Kim;Suk Jekal;Chan-Gyo Kim;Ha-Yeong Kim;Song Lee;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • In this study, silicon sludge generated in semiconductor manufacturing process is recycled and applied as materials for pigments and paints. In detail, metallic impurities are removed from silicon sludge to obtain plate-like silicon sludge powder (SW-sludge), which is then coated with titanium dioxide via sol-gel method (TCS-sludge). SW-sludge and TCS-sludge are dispersed in hydrophilic transparent varnish and sprayed onto glass substrates to observe the possibility for the application as materials for pigments and paints. Notably, the applicability of TCS-sludge-based paint is improved compared to SW-sludge-based paint after the titanium dioxide coating. Moreover, the color of TCS-sludge-based paint turns into white. Accordingly, it is confirmed that the applicability and hydrophilicity are improved by the presence of outer titanium dioxide layer. In this regard, it is expected that the recycled TCS-sludge may be a future material for the application as pigments and paints.

Synthesis of Polyimide Crosslinked Silica-based Aerogel with Enhanced Mechanical Properties and Its Physico-chemical Properties (폴리이미드 가교로 기계적 강도가 향상된 실리카 기반 에어로겔의 합성 및 물리화학적 특성 분석)

  • Kim, Jiseung;Choi, Haryeong;Kim, Taehee;Lee, Wonjun;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.9-14
    • /
    • 2022
  • Silica aerogel is a porous material with a very low density and high specific surface area. Still, its application is limited due to its weak mechanical properties due to structural features. To solve this problem, a method of complexing it with various polymers has been proposed. We synthesized polyimide cross-linked silica aerogel by the sol-gel process to obtain high mechanical properties. Tetraethyl orthosilicate (TEOS) was used as a precursor to make silica aerogel, and 3- aminopropyltriethoxysilane (APTES) was used as a coupling agent for cross-linking polyimide. Polyimide was synthesized using pyromellitic dianhydride and 3,5-diaminobenzoic acid, and mechanical properties were improved by crosslinking polyimide with 10 repeating units in the polyimide chain using the reaction formula ${\frac{n_1}{n_2}}={\frac{n}{n+1}}$ To realize silica aerogel, polyimide having various weight ratios was added before gelation, resulting in a 19-fold or greater increase in maximum compressive strength compared to pure silica aerogel. From this study, an enhancement of silica aerogel could be enhanced through polymer cross-linking bonds.

A study on the crystallographic and magnetic Properties of Ce doped Garnet (Ce이 치환된 YIG garnet의 결정학적 및 자기적 성질 연구)

  • Kum, Jun-Sig;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.46-50
    • /
    • 2004
  • Compounds of $Y_{3-x}Ce_{x}Fe{5}O_{12}$(x=0.0, 0.1, 0.2, and 0.3) were prepared using the sol-gel method. The XRD measurements show that these samples have only a single phase of the garnet structure regardless of the amount of Ce substitution. The lattice constants of x = 0.0 and x = 0.3 were found to be a$_0$ = 12.3758 ${\pm}$0.0005 ${\AA}$ and 12.4062 ${\pm}$0.0005 ${\AA}$, respectively. The lattice constant increases linearly with increasing Ce concentration. The saturation magnetization was not changed flirty, with increasing Ce concentration, but coercivity decreased form 18.3 Oe to 5.8 Oe as x increased form x = 0.0 to x = 0.1. Mossbauer spectra of $Y_{3-x}Ce_{x}Fe{5}O_{12}$ were measured at various absorber temperatures from 13 K to Neel temperature. The Mossbauer spectra were fitted by least-squares technique with two subpatterns of Fe sites in the structure and corresponding to the 16a and 24d site. The temperature dependence of the magnetic hyperfine field in $^{57}$/Fe nuclei at the tetrahedral 240 and octahedral 16a sites were analyzed based on the Neel theory of ferrirnagnetism. The result of the Debye temperatures indicated that the inter-atomic binding force for the 24d site was larger than that for the 16a site.

Heat Shield Property of Nanostructural-regulated Fe2O3/TiO2 Composites Filled with Polyacrylate Paint (나노구조 변화에 의한 Fe2O3/TiO2 복합재료를 충전한 Poly Acrylate 도료의 열차단 특성)

  • Kim, Dae Won;Ma, Young Kil;Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.43-48
    • /
    • 2020
  • Fe2O3 nanoparticles with the mixed structure of cubic and nanorod were synthesized by precipitation, hydrothermal, sol-gel method, etching process and heat treatment. Fe2O3/TiO2 core-shell (CS) of type Fe2O3@TiO2 composite was fabricated on a 20 nm nanolayer of TiO2 coated on the surface of Fe2O3 nanoparticles. Fe2O3/TiO2 yolk-shell (YS) composite was prepared by chemical etching and heat treatment of Fe2O3/TiO2 CS nanoparticles. Physical properties of Fe2O3, Fe2O3@TiO2 CS and Fe2O3@TiO2 YS nanoparticles were characterized by FE-SEM, HR-TEM and X-ray diffraction. The solar reflectance, commission internationale de l'Elcairage (CIE) color coordinate and heat shield temperatures of Fe2O3, CS and YS type Fe2O3@TiO2 pigments filled with poly acrylate (PA) paints were investigated by UV-Vis-NIR spectrometer and homemade heat shield temperature measuring device. The Fe2O3@TiO2 YS red pigment filled PA composite exhibited excellent near infrared light reflecting performance and also reduced the heat shield temperature of 13 ℃ than that of Fe2O3 filled counterparts.

Stabilization/Solidification of Radioactive LiCl-KCl Waste Salt by Using SiO2-Al2O3-P2O5 (SAP) Inorganic Composite: Part 2. The Effect of SAP Composition on Stabilization/Solidification (SiO2-Al2O3-P2O5 (SAP) 무기복합체를 이용한 LiCl-KCl 방사성 폐기물의 안정화/고형화: Part 2. SAP조성에 따른 안정화/고형화특성 변화)

  • Ahn, Soo-Na;Park, Hwan-Seo;Cho, In-Hak;Kim, In-Tae;Cho, Yong-Zun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.1
    • /
    • pp.27-36
    • /
    • 2012
  • Metal chloride waste is generated as a main waste streams in a series of electrolytic processes of a pyrochemical process. Different from carbonate or nitrate salt, metal chloride is not decomposed into oxide and chlorine but it is just vaporized. Also, it has low compatibility with conventional silicate glasses. Our research group adapted the dechlorination approach for the immobilization of waste salt. In this study, the composition of SAP ($SiO_2-Al_2O_3-P_2O_5$) was adjusted to enhance the reactivity and to simplify the solidification process as a subsequent research. The addition of $Fe_2O_3$ into the basic SAP decreased the SAP/Salt ratio in weight from 3 for SAP 1071 to 2.25 for M-SAP( Fe=0.1). The experimental results indicated that the addition of $Fe_2O_3$ increased the reactivity of M-SAP with LiCl-KCl but the reactivity gradually decreased above Fe=0.1. Also, introducing $B_2O_3$ into M-SAP requires no glass binder for the consolidation of reaction products. U-SAP ($SiO_2-Al_2O_3-Fe_2O_3-P_2O_5-B_2O_3$) could effectively dechlorinate the LiCl-KCl waste and its reaction product could be consolidated as a monolithic form without a glass binder. The leaching test result indicated that U-SAP 1071 was more durable than other SAPs wasteform. By using U-SAP, 1 g of waste salt could generated 3~4 g of wasteform for final disposal. The final volume would be about 3~4 times lower than the glass-bonded sodalite. From these results, it could be concluded that the dechlorination approach using U-SAP would be one of prospective methods to manage the volatile waste salt.