• Title/Summary/Keyword: Soil stabilizer

Search Result 99, Processing Time 0.033 seconds

Application of Soil Stabilization Technique for Shoulder Construction in Sri Lanka (스리랑카 길어깨 적용을 위한 안정처리 재료의 적용성 평가 연구)

  • Park, Ki Soo;Park, Hee Mun
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.21-26
    • /
    • 2018
  • PURPOSES : The objective of this study is to evaluate the application of soil stabilization method for soft shoulder construction in the iRoad Project of Sri Lanka. METHODS : Firstly, the quantitative analysis of soil strength improvement due to soil stabilization was done for soil samples collected from iRoad construction sites. Two types of soils were selected from iRoad Project sites and prepared for soil stabilization testing by the Road Development Authority. Secondly, the appropriate stabilizer was selected at given soil type based on test results. Two different stabilizers, ST-1 and ST-2, produced in Korea were used for estimating soil strength improvements. Finally, the optimum stabilizer content was determined for improving shoulder performance. The uniaxial compressive strength (UCS) test was conducted to evaluate the strength of stabilized soil samples in accordance with ASTM D 1633. The use of bottom ash as a stabilizer produced from power plant in Sri Lanka was also reviewed in this task. RESULTS : It is found from the UCS testing that a 3% use of soil stabilizer can improve the strength up to 2~5 times in stabilized soft shoulder soils with respect to unstabilized soils. It is also observed from UCS testing that the ST-1 shows high strength improvement in 3% of stabilizer content but the strength improvement rate with increase of stabilizer content is relatively low compared with ST-2. The ST-2 shows a low UCS value at 3% of content but the UCS values increase significantly with increase of stabilizer content. When using the ST-2 as stabilizing agent, the 5% is recommended as minimum content based on UCS testing results. Based on the testing results for bottom ash replacement, the stabilized sample with bottom ash shows the low strength value. CONCLUSIONS : This paper is intended to check the feasibility for use the soil stabilization technique for shoulder construction in Sri Lanka. The use of soil stabilizer enables to improve the durability and strength in soft shoulder materials. When applying the bottom ash as a soil stabilizer, various testings should be conducted to satisfy the specification criteria.

A Study on the mix design for the Soilcrete by Using FGC Soil Stabilizer (FGC계 고화재를 이용한 Soilcrete 배합설계에 관한 연구)

  • 천병식;고갑수;김진춘;하상욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.293-300
    • /
    • 1999
  • Soilcrete has been the traditional material for the paving and soft ground improvement techniques. But because the durability is not excellent and the quality is not homogeneous, it has not been used for the various purposes up to date. And because the quality of soilcrete is apt to be changed by the content of water and soil stabilizer, and the kind of soil and soil stabilizer, it is not free of cares. But with the increase of naturally oriented needs for the light traffic road such as pedestrian roads of the garden, golf courses and sidewalks, the cases of soilcrete paving has been increased recently. This study aims at making the reference table of the mix design in accordance with the required design specifications for the soilcrete admixtures by the FGC soil stabilizer by using the statistical experiment method. The treated soil is the clay which are widely spreaded in Korea. As the results of this study we can derive the effective reference mix design table for the clay soil treated by the FGC soil stabilizer in accordance with the compressive strength of 50∼200kg/$\textrm{cm}^2$ soilcrete with respect to the contents of water, soil stabilizer and fine sand.

  • PDF

Improving performance of soil stabilizer by scientific combining of industrial wastes

  • Yu, Hao;Huang, Xin;Ning, Jianguo;Li, Zhanguo;Zhao, Yongsheng
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.247-256
    • /
    • 2016
  • In this paper, based on understanding the design theories on soil stabilization, a series of soil stabilizers were prepared with different kinds of industrial wastes such as calcined coal gangue (CCG), blast furnace slag (SS), steel slag (SL), carbide slag (CS), waste alkali liquor (JY), and phosphogypsum (PG). The results indicated that when the Portland cement (PC) proportion was lower than 20% in the stabilizer, for the soil sample selected from Wuhan (WT) and Beijing (BT), the unconfined compress strength (UCS) of the stabilized soil specimens could increase 4.8 times and 5.4 times respectively than that of the specimens stabilized only by PC; compared with the UCS of the specimen stabilized only by PC, the UCS of the specimen which was made from soil sample WT and stabilized by the stabilizer composed only by CCG, CS, and PG increased 1.5 times, and UCS of the specimen which was made from soil sample BT and stabilized by the stabilizer composed only by SS, JY, and PG increased 4.5 times.

Development of Rural Road Pavement Technology Using Cement Stabilizer (시멘트계 고화재를 활용한 농어촌도로 포장공법 개발)

  • Oh, Young-In;Kong, Gil-Yong;Kim, Seung-Wook
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.171-184
    • /
    • 2007
  • Chemical admixture stabilization has been extensively used in both shallow and deep stabilization in order to improve inherent properties of the soil such as strength and deformation behavior. An increment in strength, a reduction in compressibility, an improvement of the swelling or squeezing characteristics and increasing the durability of soil are the main aims of the admixtures for soil stabilization. Recently, the various advanced cement stabilizer mixing technique was developed. Advanced cement stabilizer mixing technique is environmentally-friendly and has an excellent mixing property and outstanding mixing speed. In this study, to develop the rural road pavement technology using cement stabilizer, compaction and unconfined compression test were performed with various mixing ratio and two types of soil(clay and silty soil). And the freezing/thaw test and bending strength test performed to develop suitable cement stabilizer material for stabilization of rural road. Based on the test results, the liquid types of cement stabilizer material and silty soil mixture are most suitable for rural road construction and although the mixing ratio is low, cement stabilizer mixture is effective for durability of rural road surface layer.

  • PDF

Strength Characteristics of Low Cement Ratio Soil Stabilizer Using Industrial By-products (산업부산물을 이용한 저시멘트계 지반개량재의 강도 특성)

  • Cho Jin-Woo;Lee Yong-Soo;Yu Jun;Kim Sei-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.31-39
    • /
    • 2006
  • An experimental investigation was carried out to evaluate the strength characteristics of low cement ratio soil stabilizer. The low cement ratio soil stabilizer has been developed by the replacement of certain part of cement with by-product pozzolanic materials such as blast furnace slag, fly ash, waste gypsum and by using activator. A series of unconfined compressive strength tests were performed to investigate and obtain high-strength composite soil stabilizer with large amounts of blast furnace slag and fly ash. Test results show that there were better properties when blast furnace slag, fly ash, waste gypsum, and activator were added in proper ratio. The replacement of certain part of cement with by-product pozzolanic materials improved the strength and pore structure properties.

An Experimental Study on Optimal Mixture Ratio of Hardening Agent for Surface Soil Stabilization (연약지반 표층안정처리를 위한 고화재의 최적조합 산정에 관한 실험적 연구)

  • 천병식;김진춘;최현석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.17-24
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization of soft ground. This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specifications. Hardening agent is properly mixtured with Fly ash, Gypsum, Slag and Cement for the ettringite hydrates which is effective for early stabilization of unconsolidated soil. The treated soil is the clay which are widely found here and there in Korea. In this study, preliminary tests were performed to get optimal mixture ratio of stabilizer ingredient, and marine clay in Jin-Hae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soil were peformed to get optimal mixture ratio for 16 stabilizer material of 6 type, and stabilizer mixing was determined.

  • PDF

A Study on the Surface Soil Stabilization Method on Marine Clay (해성점성토의 표층안정처리 공법에 관한 연구)

  • 천병식;한기열
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.129-134
    • /
    • 2000
  • Hardening agent has been the traditional material for surface soil stabilization a sat ground This study aims at determining optimal mixture ratio of hardening agent in accordance with the required design specificutions. Hardening agent is properly mixed with Fly ash, Gyosum, Slag and Cement for the etmmngite hydrates which is dective for early stabilization of unconsoliokrred soil. \ulcornerhe treated soil is the clay tint is widely found here and there in Koresz In this study, preliminary tests were performed to get optirml mixture ratio of stabilizer ingredient, and mrvine clay in Jin-Hae was used to get physid and Md properties. Labomtory tests of 50 stabilized soil were performed to get optimal mixture mtio for 16-stabilizer merial a 6 types, a d stabilizer mixing was determined

  • PDF

A Study on Pre-Red Mud and Bio-Solids Applicability as Soil Stabilizer (Pre-Red Mud 및 Bio-Solids의 토양 안정화제 활용 가능성에 대한 연구)

  • Yang, Joo-Kyung;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.419-428
    • /
    • 2011
  • Recycling as a stabilizer of industrial by-product can be terms of the proper handling of industrial by-product and positive side in terms of recycling of waste. This study was performed to evaluate has the possibility as stabilizer by primary processing Pre-Red Mud and Bio-Solids which are generated as waste in soils contaminated with heavy metals and compared the efficiency with steel slug being applied in an existing site. In evaluation of the arsenic-fixing ability of stabilizer in batch test, Bio-Solids have the similar arsenic-fixing ability with Pre-Red Mud, which shows 17% h igher arsenic-fixing ability than PS Ball. Since the stabilization periods using Bio-Solids and Pre-Red Mud are faster than the PS Ball, they seems to be better stabilizer than PS Ball to decrease the leaching of arsenic in contaiminated soil.

A Study on the Surface Soil Stabilization on Marine Clay by the Hardening Agent (고화재에 의한 해성점성토의 표층안정처리에 관한 연구)

  • 천병식;양진석
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.92-97
    • /
    • 2001
  • Hardening agents have been the traditional material for surface soil stabilization of soft ground. This study aims at determining the optimal mixture ratio of the hardening agent in accordance with the required design specifications. Hardening agents which consists of fly ash, gypsum, slag and cement for the ettringite hydrates is effective for early stabilization of unconsolidated soil. The raw ground material is the clay that is widely found in Korea. In this study, preliminary tests were performed to get an optimal mixture ratio of the stabilizer ingredient and marine clay from Jinhae was used to get physical and chemical properties. Laboratory tests of 50 stabilized soils were performed to get an optimal mixture ratio for 16-stabilizer materials of 6 types, and a mixture ratio of the stabilizer ingredient and marine clay was determined.

  • PDF

Basic Study on Development of Eco-Friendly Vegetation-Block (친환경 식생블록 개발을 위한 기초연구)

  • Heo, Yol;Oh, Sewook;Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.61-67
    • /
    • 2014
  • With a view to resolving environmental problems of hazardous cement, this study seeks to identify the unconfined compressive strength and bending strength of the vegetation block designed herein by utilizing high-strength natural soil stabilizer instead of cement. Soil stabilizer is mainly made of mixture of short fiber extracted from natural fiber and lime, etc. Soil stabilizer reinforces the shearing strength of soil to improve block supportive power and durability while preventing flood and frost damages. For the unconfined compressive strength test, test pieces were prepared by mixing soil stabilizer and weathered soil in different ratios of 6 %, 12 % and 18 %. Experiments were carried out according to curing periods of 5th, 7th, 14th and 28th of the day. For bending strength test, blocks were made in the same mixture ratios as for the unconfined compressive test and tested for each stage. Also, to evaluate for the field applicability, proposed optimum water content considering the characteristics of the soil stabilizer. Permeability test result for the vegetation block, satisfied by the KS F 4419 quality standards.