• 제목/요약/키워드: Soil particles

검색결과 672건 처리시간 0.027초

연약지반 개량용 배수재의 Clogging현상에 관한 실험적 연구 (Clogging Test on Drainage Materials for Soft Ground Improvement)

  • 고용일;김홍택;박영호;김대영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.181-188
    • /
    • 2004
  • Composite soil methods among granular pile merhods that we could improve soft ground of fine soil particles by, have permeability as one of fundamental principals. The catual state, that voids of sand or gravel, etc. of granular soil as drainage materials are clogged by fine soil particles, is 'clogging'. In this study, it is analysed that using sand or gravel, etc. of granular soil as drainage materials, experiment are made by clogging tester on several condition.

  • PDF

계면활성제 용액네에서 고형오구의 직물에서의 부착에 영향을 주는 전해질 효과-$\alpha$-$Fe_2O_3$입자의 PET 섬유직물에의 부착- (Effect of Electrolyte on the Adhesion of Particulate Soil to Fabric in the Surfactant Solution-Adhesion of -$\alpha$-$Fe_2O_3$Particles to PET Fabric-)

  • 강인숙;김병주
    • 한국의류학회지
    • /
    • 제25권8호
    • /
    • pp.1465-1474
    • /
    • 2001
  • The dispersion stability of particles and the adsorption of surfactant were examined as a fundamental environment to adhesion of particulate soil to fabric. The adsorption of surfactant on the PEF fabrics decreased with the addition of electrolytes and decreased with increasing the ionic strengths showed similar tendency to PET fabric. And the dispersion force of $\alpha$-Fe$_2$O$_3$particles decreased with the addition of electrolyte. The adhesion of particulate soil to fabric, increased with decreasing the adsorption of surfactant the correlation between the two was high at low ionic strength. The correlation between the adsorption of surfactants on $\alpha$-Fe$_2$O$_3$ particles and the adhesion of particles to fabric was smaller as shown in the correlation between the adsorption of surfactants on fiber substrate and the adhesion of particles on fabric. However, the correlation between the adhesion of particles to fabric and the stability of particle dispersion was relatively more significant.

  • PDF

교통량별 가로변 토양특성 및 타이어 마모 입자(TWPs) 분석 (Analysis of Roadside Soil Characteristics and Tire Wear Particles(TWPs) According to Traffic Volume)

  • 이선영;주진희;윤용한
    • 한국환경과학회지
    • /
    • 제32권9호
    • /
    • pp.627-634
    • /
    • 2023
  • Tire wear particles(TWPs), regarded as a microplastic, is generated in significant quantities each year and exist in various spaces and have a negative impact on the surrounding environment. Particularly, roadside environments fall within the direct influence of TWPs, necessitating proactive investigation for contamination management and response. Therefore, this study aimed to investigate the soil acidity and electrical conductivity(EC) and TWPs in the roadside soil of six sites based on traffic volume. The analysis revealed that the soil in all sites exhibited subacidity, and there were no significant differences in EC. Microscopic and FT-IR analysis revealed the presence of microscopic particles in soil samples that exhibited common visual characteristics of TWPs. In the road with the highest traffic volume, 48,300 TWPs were detected per unit area. Furthermore, a proportional relationship between traffic volume and TWPs particles was established. However, influences other than traffic volume on TWPs particle count within the soil were observed. Therefore, for the management of TWPs contaminated roadside soil, a proactive response is necessary in areas with high traffic volumes. However, in order to effectively address the factors contributing to the generation and dispersion of TWPs, further research is required with a multidimensional approach.

프랑스 A-71 고속도로변 토양과 부유퇴적물의 중금속 거동 및 오염에 관한 연구 (The Environmental Pollution and Geochemical Behavior of Heavy Metals in Roadside Soil and Settling Particles from Retention Pond on A-71 Motorway, France)

  • 이평구
    • 한국토양환경학회지
    • /
    • 제2권1호
    • /
    • pp.21-34
    • /
    • 1997
  • 고속도로변에 설치된 간이정화시설은 drainage system의 일부분으로 우기에 빗물의 양을 조절하고 고속도로 노면에서 운반되어 간이정화시설에 유입된 오염된 입자를 침전, 제거시키기 위해 설치되었다. 빗물에 입자상태로 이동된 납, 아연, 카드뮴를 제거하기 위해 설치된 간이정화시설의 효과를 평가하기 위해 수리지질학적 연구 및 부유퇴적물의 물리화학적 특성을 규명하기 위한 연구가 수행되었다. 부유퇴적물과 비교하기 위해 심하게 오염된 도로변토양과 오염되지 않은 background soil에 대해서도 연구가 수행되었다. 부유퇴적물의 중금속함량은 background Sologne soil에 비해 원소에 따라 2~8배 높게 나타났다. 그러나, 도로변토양의 중금속함량은 부유퇴적물에 비해 7~26배 높게 나타났다. Sequential extraction methods (Tessier et al., 1979)를 이용하여 분석한 결과 심하게 오염된 도로변토양에 존재하는 납, 아연, 카드뮴은 대부분 쉽게 용해될 수 있는 상태 (Fraction FII, FIII)로 존재하며 반면에 규산염광물과 수반되는 금속함량의 비율은 매우 낮았다. 부유퇴적물에서는 규산염광물과 수반되는 금속함량이 전체 금속함량의 113까지 크게 증가하였다. 납과 아연은 fraction FI에서 거의 용해되지 않았는 반면에 (전체 함량의 약 3%) 카드뮴은 가장 용해성이 높은 fraction FI("exchangeable" )에서 상당량이 용해되었으며 특히 도로변토양의 경우 전체 카드뮴 함량의 1/4을 차지하였다. 도로변토양과 부유퇴적물사이의 중금속함량 차이가 매우 큰 것은 중금속의 대부분이 간이정화시설에 이르기전에 고속도로변과 배수로 일부에 축적되어 모두 상실되었기 때문이다.

  • PDF

전답용 유기질 세립토의 슬레이킹 내구성 및 분쇄 특성 (Slaking and Particle-Separation Characteristics of the Organic Fine Soil in Paddy Fields)

  • 조성민
    • 한국환경복원기술학회지
    • /
    • 제5권3호
    • /
    • pp.1-8
    • /
    • 2002
  • Clayey paddy soils should be mixed with other good coarse soils to be used as a material for the lining, or, embankment. However, it has been difficult to separate soil particles from each other because of the internal cohesion in the soil gradation(separation) characteristics of the fine soil were investigated by various laboratory tests including the slaking durability test. Degradation rate of the soil were dependent upon the clay content and the initial water content before the submergence. The amount of degradations decreased as initial water content increased with exponential functions. The dried specimens separated into the particles after 24 hours of the submergence and specimens which water contents were less than 10% also separated into the particles after 2, or 3 days of the submergence. Compaction curves and the unconfined strength were not varied before and after the submergence. However, unconfined strength decreased as water content increased.

준설토의 유실율 평가방법에 관한 연구 (A Study on Estimation of Loss Rate of Hydraulic Fills)

  • 김홍택;노종구;김석열;강인규;김승욱;박재억
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.185-192
    • /
    • 2000
  • Recently, the hydraulic fill method is commonly used in many reclamation projects due to lack of fill materials. The method of hydraulic fill in reclamation is executed by transporting the mixture of water-soil particles into a reclaimed land through dredging pipes, then the dredged soil particles settle down in the water or flow over an out flow weir with the water. In the present study, practice each three method in order to suggest method of determining the loss rate of the dredged fills. The first sieve and hydrometer analysis were performed with the soil samples obtained before and after dredging and then apply theory of particle breakage, the second compare with the volume of dredged soil between at the dredging area and the target pond and the last compare with weight of dredged soil between before and after dredging at the dredging area and in the target pond for estimating the amount of soil particles residual at the reclaimed area and the loss of soil particles passed through the weir. In addition to compare with the loss ratio between as using Marsal's modified theory of particle breakage and measured weight and volume in the field.

  • PDF

Unconfined compressive strength property and its mechanism of construction waste stabilized lightweight soil

  • Zhao, Xiaoqing;Zhao, Gui;Li, Jiawei;Zhang, Peng
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.307-314
    • /
    • 2019
  • Light construction waste (LCW) particles are pieces of light concrete or insulation wall with light quality and certain strength, containing rich isolated and disconnected pores. Mixing LCW particles with soil can be one of the alternative lightweight soils. It can lighten and stabilize the deep-thick soft soil in-situ. In this study, the unconfined compressive strength (UCS) and its mechanism of Construction Waste Stabilized Lightweight Soil (CWSLS) are investigated. According to the prescription design, totally 35 sets of specimens are tested for the index of dry density (DD) and unconfined compressive strength (UCS). The results show that the DD of CWSLS is mainly affected by LCW content, and it decreases obviously with the increase of LCW content, while increases slightly with the increase of cement content. The UCS of CWSLS first increases and then decreases with the increase of LCW content, existing a peak value. The UCS increases linearly with the increase of cement content, while the strength growth rate is dramatically affected by the different LCW contents. The UCS of CWSLS mainly comes from the skeleton impaction of LCW particles and the gelation of soil-cement composite slurry. According to the distribution of LCW particles and soil-cement composite slurry, CWSLS specimens are divided into three structures: "suspend-dense" structure, "framework-dense" structure and "framework-pore" structure.

갯버들 근계의 토양 입자 해리 억제효과에 관한 연구 (A Study on the Reduction of Soil Particle Dissociation Rate by the Root of 'Salix Gracilistyla')

  • 이춘석;박명안;강호철
    • 한국환경복원기술학회지
    • /
    • 제6권3호
    • /
    • pp.69-78
    • /
    • 2003
  • The main purpose of this study was to verify the shore margin protection effect of the root system of Salix gracilistyla Miq. developed from direct sticking cuttings on wetland, focusing on the effect of the root system reducing soil particle dissociation rate in water. The soil dissociation rate was examined through slaking tests with cylindric pure soil column at maximum particle density and the same size column of root reinforced soil. The dry weight of remained soil was measured after 5, 10, 15, 30minutes and 1, 6, 12, 24, 48hours inundation. As results, the soil particles began to dissociate severely at 10 minutes and only 10% of soil particles were left after 25minutes inundation. The stable slope angle of pure soil was $36^{\circ}$after 24 hours. On the other hand, the columns of root reinforced soil were stable even after 24hours, being dissociated only 7.2% of soil particles. So, it was revealed that the root system was very effective materials protecting more than 80% of soil particle from dissociation in inundation.

Application of Nano-sized Amphiphilic Polyurethane Particles for The Remediation of PAH-Contaminated Soil:Sorption to Soil and PAH Solubilization

  • Park, Heon-Sik;Ahn, Ik-Sung;Kim, Ju-Young;Park, Sung-Yong;Shin, Young-Seob
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 추계학술발표회
    • /
    • pp.183-186
    • /
    • 2002
  • Experiments in the batch soil/aqueous systems were conducted to compare the sorption onto soil and extraction efficiency of sorbed phenanthrene in the presence of the micelle-forming anionic surfactant(SDS) or the micelle-like amphiphilic nano-sized polyurethane particles. Micelle-like amphiphilic nano-sized polyurethane(APU) particles synthesized from amphiphilic urethane acrylate anionomers(UAA) could solubilize phenanthrene within their hydrophobic interiors as the same way that surfactants micelles did in aqueous phase.

  • PDF

토양의 침식과 보존에 관한 이론적 분석 4. 삼림토양의 침식과 유실기구 (The Theoretical Analyses of the Soil Erosion and Conservation 4. Erosion and Leaching Mechanism of the Forest Soils)

  • 장남기
    • 아시안잔디학회지
    • /
    • 제10권1호
    • /
    • pp.49-59
    • /
    • 1996
  • This report is researched on the cause and mechanism of soil erosion in comparison among Kwangnung, Mt. Kaya, Mt. Chili, and Mt. Soorak by physical and chemical analyses of their for- est soils. Clay, silt, and fine sand of Mt. Soorak are far less than those of Mt. Chili, Mt. Kaya, and Kwangnung area while coarse sand is very high level. The clay ratio of soil at Mt. Soorak is the most high level in comparison with that of other area. Denudation at Mt. Soorak, therefore, is cause of erosion by the result of transportation of soil particles. The eroding velocity increase for larger particle size and stronger cohesion between soil particles. Very fine sand, silt, and clay can be present in suspension near the bottom and the size of the particles in suspension depends upon the velocity of the current near the bottom and the roughness of the bottom. Key words: Theoretical analyses, Soil erosion and conservation, Forest soils.

  • PDF