• 제목/요약/키워드: Soil nutrient sensing

검색결과 10건 처리시간 0.029초

이온선택성 전극을 이용한 토양추출물의 질산 및 칼륨이온 측정 (Sensing Nitrate and Potassium Ions in Soil Extracts Using Ion-Selective Electrodes)

  • 김학진
    • Journal of Biosystems Engineering
    • /
    • 제31권6호
    • /
    • pp.463-473
    • /
    • 2006
  • Automated sensing of soil macronutrients would allow more efficient mapping of soil nutrient spatial variability for variable-rate nutrient management. The capabilities of ion-selective electrodes for sensing macronutrients in soil extracts can be affected by the presence of other ions in the soil itself as well as by high concentrations of ions in soil extractants. Adoption of automated, on-the-go sensing of soil nutrients would be enhanced if a single extracting solution could be used for the concurrent extraction of multiple soil macronutrients. This paper reports on the ability of the Kelowna extractant to extract macronutrients (N, P, and K) from US Corn Belt soils and whether previously developed PVC-based nitrate and potassium ion-selective electrodes could determine the nitrate and potassium concentrations in soil extracts obtained using the Kelowna extractant. The extraction efficiencies of nitrate-N and phosphorus obtained with the Kelowna solution for seven US Corn Belt soils were comparable to those obtained with IM KCI and Mehlich III solutions when measured with automated ion and ICP analyzers, respectively. However, the potassium levels extracted with the Kelowna extractant were, on average, 42% less than those obtained with the Mehlich III solution. Nevertheless, it was expected that Kelowna could extract proportional amounts of potassium ion due to a strong linear relationship ($r^2$ = 0.96). Use of the PVC-based nitrate and potassium ion-selective electrodes proved to be feasible in measuring nitrate-N and potassium ions in Kelowna - soil extracts with almost 1 : 1 relationships and high coefficients of determination ($r^2$ > 0.9) between the levels of nitrate-N and potassium obtained with the ion-selective electrodes and standard analytical instruments.

토양 온도, 수분, EC 모니터링을 위한 다양한 EC 센서 비교 및 농경지 토양에서 이온 함량과 EC의 상관관계 평가 (Comparison of Various EC Sensors for Monitoring Soil Temperature, Water Content, and EC, and Its Relation to Ion Contents in Agricultural Soils)

  • 박진희;성좌경
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.157-164
    • /
    • 2021
  • Smart agriculture requires sensing systems which are fundamental for precision agriculture. Adequate and appropriate water and nutrient supply not only improves crop productivity but also benefit to environment. However, there is no available soil sensor to continuously monitor nutrient status in soil. Electrical conductivity (EC) of soil is affected by ion contents in soil and can be used to evaluate nutrient contents in soil. Comparison of various commercial EC sensors showed similar water content and EC values at water content less than 20%. Soil EC values measured by sensors decreased with decreasing soil water content and linearly correlated with soil water content. EC values measured by soil sensor were highly correlated with water soluble nutrient contents such as Ca, K, Mg and N in soil indicating that the soil EC sensor can be used for monitoring changes in plant available nutrients in soil.

Applications of Ground-Based Remote Sensing for Precision Agriculture

  • Hong Soon-Dal;Schepers James S.
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2005년도 국제학술회의
    • /
    • pp.100-113
    • /
    • 2005
  • Leaf color and plant vigor are key indicators of crop health. These visual plant attributes are frequently used by greenhouse managers, producers, and consultants to make water, nutrient, and disease management decisions. Remote sensing techniques can quickly quantify soil and plant attributes, but it requires humans to translate such data into meaningful information. Over time, scientists have used reflectance data from individual wavebands to develop a series of indices that attempt to quantify things like soil organic matter content, leaf chlorophyll concentration, leaf area index, vegetative cover, amount of living biomass, and grain yield. The recent introduction of active sensors that function independent of natural light has greatly expanded the capabilities of scientists and managers to obtain useful information. Characteristics and limitations of active sensors need to be understood to optimize their use for making improved management decisions. Pot experiments involving sand culture were conducted in 2003 and 2004 in a green house to evaluate corn and red pepper biomass. The rNDVI, gNDVI and aNDVI by ground-based remote sensors were used for evaluation of corn and red pepper biomass. The result obtained from the case study was shown that ground remote sensing as a non-destructive real-time assessment of plant nitrogen status was thought to be a useful tool for in season crop nitrogen management providing both spatial and temporal information.

  • PDF

지상 원격탐사의 농업적 활용 (Agricultural Application of Ground Remote Sensing)

  • 홍순달;김재정
    • 한국토양비료학회지
    • /
    • 제36권2호
    • /
    • pp.92-103
    • /
    • 2003
  • Research and technological advances in the field of remote sensing have greatly enhanced the ability to detect and quantify physical and biological stresses that affect the productivity of agricultural crops. Reflectance in specific visible and near-infrared regions of the electromagnetic spectrum have proved useful in detection of nutrient deficiencies. Especially crop canopy sensors as a ground remote sensing measure the amount of light reflected from nearby surfaces such as leaf tissue or soil and is in contrast to aircraft or satellite platforms that generate photographs or various types of digital images. Multi-spectral vegetation indices derived from crop canopy reflectance in relatively wide wave band can be used to monitor the growth response of plants in relation to environmental factors. The normalized difference vegetation index (NDVI), where NDVI = (NIR-Red)/(NIR+Red), was originally proposed as a means of estimating green biomass. The basis of this relationship is the strong absorption (low reflectance) of red light by chlorophyll and low absorption (high reflectance and transmittance) in the near infrared (NIR) by green leaves. Thereafter many researchers have proposed the other indices for assessing crop vegetation due to confounding soil background effects in the measurement. The green normalized difference vegetation index (GNDVI), where the green band is substituted for the red band in the NDVI equation, was proved to be more useful for assessing canopy variation in green crop biomass related to nitrogen fertility in soils. Consequently ground remote sensing as a non destructive real-time assessment of nitrogen status in plant was thought to be useful tool for site specific crop nitrogen management providing both spatial and temporal information.

Reflectance Measurements of Soil Variability

  • Sudduth, K.A.;Hong, S.Y.;Hummel, J.W.;Kitchen, N.R.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1194-1196
    • /
    • 2003
  • Variations in soil physical and chemical properties can affect agricultural productivity and the environmental implications of crop production. These variations are present and may be important at regional, field, and sub-field (precision agriculture) scales. Because traditional measurements are time-consuming and expensive, reflectance-based estimates of soil properties such as texture, organic matter content, water content, and nutrient status are attractive. Soil properties have been related to reflectance measured with laboratory, in-field, airborne, and satellite sensors. Both multispectral and hyperspectral instruments have been used, with both natural and artificial illumination. Varying levels of accuracy have been obtained, with the best results (r > 0.95) using hyperspectral reflectance data to estimate soil organic matter and water content.

  • PDF

Microbiological Features and Bioactivity of a Fermented Manure Product (Preparation 500) Used in Biodynamic Agriculture

  • Giannattasio, Matteo;Vendramin, Elena;Fornasier, Flavio;Alberghini, Sara;Zanardo, Marina;Stellin, Fabio;Concheri, Giuseppe;Stevanato, Piergiorgio;Ertani, Andrea;Nardi, Serenella;Rizzi, Valeria;Piffanelli, Pietro;Spaccini, Riccardo;Mazzei, Pierluigi;Piccolo, Alessandro;Squartini, Andrea
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권5호
    • /
    • pp.644-651
    • /
    • 2013
  • The fermented manure derivative known as Preparation 500 is traditionally used as a field spray in biodynamic agriculture for maintaining and increasing soil fertility. This work aimed at characterizing the product from a microbiological standpoint and at assaying its bioactive properties. The approach involved molecular taxonomical characterization of the culturable microbial community; ARISA fingerprints of the total bacteria and fungal communities; chemical elemental macronutrient analysis via a combustion analyzer; activity assays for six key enzymes; bioassays for bacterial quorum sensing and chitolipooligosaccharide production; and plant hormone-like activity. The material was found to harbor a bacterial community of $2.38{\times}10^8$ CFU/g dw dominated by Gram-positives with minor instances of Actinobacteria and Gammaproteobacteria. ARISA showed a coherence of bacterial assemblages in different preparation lots of the same year in spite of geographic origin. Enzymatic activities showed elevated values of ${\beta}$-glucosidase, alkaline phosphatase, chitinase, and esterase. The preparation had no quorum sensing-detectable signal, and no rhizobial nod gene-inducing properties, but displayed a strong auxin-like effect on plants. Enzymatic analyses indicated a bioactive potential in the fertility and nutrient cycling contexts. The IAA activity and microbial degradation products qualify for a possible activity as soil biostimulants. Quantitative details and possible modes of action are discussed.

이온선택성 멤브레인을 이용한 양액 내 질산태 질소 및 칼륨 측정 (Sensing NO3-N and K Ions in Hydroponic Solution Using Ion-Selective Membranes)

  • 김원경;박두산;김영주;노미영;조성인;김학진
    • Journal of Biosystems Engineering
    • /
    • 제35권5호
    • /
    • pp.343-349
    • /
    • 2010
  • Rapid on-site sensing of nitrate-nitrogen and potassium ions in hydroponic solution would increase the efficiency of nutrient use for greenhouse crops cultivated in closed hydroponic systems while reducing the potential for environmental pollution in water and soil. Ion-selective electrodes (ISEs) are a promising approach because of their small size, rapid response, and the ability to directly measure the analyte. The capabilities of the ISEs for sensing nitrate and potassium in hydroponic solution can be affected by the presence of other ions such as calcium, magnesium, sulfate, sodium, and chloride in the solution itself. This study was conducted to investigate the applicability of two ISEs consisting of TDDA-NPOE and valinomycin-DOS PVC membranes for quantitative determinations of $NO_3$-N and K in hydroponic solution. Nine hydroponic solutions were prepared by diluting highly concentrated paprika hydroponic solution to provide a concentration range of 3 to 400 mg/L for $NO_3$-N and K. Two of the calibration curves relating membrane response and nutrient concentration provided coefficients of determination ($R^2$) > 0.98 and standard errors of calibration (SEC) of < 3.79 mV. The use of the direct potentiometry method, in conjunction with an one-point EMF compensation technique, was feasible for measuring $NO_3$-N and K in paprika hydroponic solution due to almost 1:1 relationships and high coefficients of determination ($R^2$ > 0.97) between the levels of $NO_3$-N and K obtained with the ion-selective electrodes and standard instruments. However, even though there were strong linear relationships ($R^2$ > 0.94) between the $NO_3$-N and K concentrations determined by the Gran's plot-based multiple standard addition method and by standard instruments, hydroponic $NO_3$-N concentrations measured with the ISEs, on average, were about 10% higher than those obtained with the automated analyzer whereas the K ISE predicted about 59% lower K than did the ICP spectrometer, probably due to no compensation for a difference between actual and expected concentrations of standard solutions directly prepared.

무인비행체 영상을 활용한 벼 수량 분포 추정 (Estimation of Rice Grain Yield Distribution Using UAV Imagery)

  • 이경도;안호용;박찬원;소규호;나상일;장수용
    • 한국농공학회논문집
    • /
    • 제61권4호
    • /
    • pp.1-10
    • /
    • 2019
  • Unmanned aerial vehicle(UAV) can acquire images with lower cost than conventional manned aircraft and commercial satellites. It has the advantage of acquiring high-resolution aerial images covering in the field area more than 50 ha. The purposes of this study is to develop the rice grain yield distribution using UAV. In order to develop a technology for estimating the rice yield using UAV images, time series UAV aerial images were taken at the paddy fields and the data were compared with the rice yield of the harvesting area for two rice varieties(Singdongjin, Dongjinchal). Correlations between the vegetation indices and rice yield were ranged from 0.8 to 0.95 in booting period. Accordingly, rice yield was estimated using UAV-derived vegetation indices($R^2=0.70$ in Sindongjin, $R^2=0.92$ in Donjinchal). It means that the rice yield estimation using UAV imagery can provide less cost and higher accuracy than other methods using combine with yield monitoring system and satellite imagery. In the future, it will be necessary to study a variety of information convergence and integration systems such as image, weather, and soil for efficient use of these information, along with research on preparing management practice work standards such as pest control and nutrient use based on UAV image information.

지상원격측정 센서의 반사율 지표를 활용한 사경재배 연초의 생체량 및 질소영양 평가 (Evaluation of Biomass and Nitrogen Nutrition of Tobacco under Sand Culture by Reflectance Indices of Ground-based Remote Sensors)

  • 강성수;정현철;전상호;홍순달
    • 한국토양비료학회지
    • /
    • 제42권2호
    • /
    • pp.70-78
    • /
    • 2009
  • 질소 스트레스 조건에서 재배된 연초 (Nicotiana tabacum L.)의 생체량 및 질소영양 상태와 원격측정센서 반사율 지표의 상호관계로부터 센서의 반사율 지표를 활용한 연초의 질소 덧거름 시비량 결정 및 수량 예측을 위한 도구로서의 활용 가능성을 평가하였다. 이식 후 30일째의 rNDVI와 gNDVI, 그리고 40일째의 반사율 지표들은 건물중 및 질소흡수량과 밀접한 정의 상관(P<0.05)을 보였다. 40일째 분광방사계의 gNDVI와 Crop Circle passive 센서의 aNDVI는 각각 건물중을 85%와 84%, 질소흡수량을 85%와 92% 설명하였다. 수량 및 수확기 질소 흡수량은 정식 후 35일, 40일, 45일, 50일, 수확기에 측정된 엽록소 측정값 및 반사율 지표와 고도로 유의성 있는 정의 상관을 보였다. 정식 후 40일째 분광방사계에 의한 gNDVI 지표는 연초 수량변동의 72% 설명 가능한 관계를 나타냈다. 따라서 연초의 경우 이식 후 40일째에 측정한 gNDVI 반사율 지표는 실시간에 비파괴적으로 수량을 예측할 수 있음을 시사하였다. 그리고 40일째 gNDVI로 계산한 충족지수는 질소시비수준의 73%를 설명할 수 있었다. 따라서 반사율 지표를 이용한 충족지수는 연초의 질소영양상태를 추정하여 위치별 변량시비가 가능한 방법으로 활용 가능할 것으로 판단되었다.

지상부 원격탐사 센서의 반사율지수에 의한 고추 생체량 추정 (Estimation for Red Pepper(Capsicum annum L.) Biomass by Reflectance Indices with Ground-Based Remote Sensor)

  • 김현구;강성수;홍순달
    • 한국토양비료학회지
    • /
    • 제42권2호
    • /
    • pp.79-87
    • /
    • 2009
  • 지상 원격탐사 센서를 이용하여 질소 스트레스에 의한 고추의 생체량을 평가하기 위하여 사경재배를 이용한 포트실험을 수행하였다. 고추의 질소 스트레스 처리는 Hoagland 영양액 질소농도를 기준으로 40%에서 140% 까지 20% 간격으로 6개 수준으로 하였다. 고추는 이식후 120일 동안 생육시켰고 지상부의 생체중과 건물중, 잎의 질소흡수량과 엽록소 함량 그리고 수량을 조사하였다. 지상 원격탐사의 센서종류는 SPAD-502(Minolta)와 $Field\;Scout^{TM}$(CM1000, Spectrum) 엽록소 측정기, Spectroradiometer(LI-1800, Licor Inc.), $Crop\;Circle^{TM}$(Holland Scientific), 그리고 $GreenSeeker^{TM}$(Ntech Industries)를 사용하였다. 이식 후 120일째 고추의 지상부 건물중은 48.2 g/plant에서 196.6 g/plant로 큰 차이를 보였으며 변동계수는 27.8%였다. 이식후 40일, 50일 및 80일째 각 생육시기에서 원격탐사 반사율 지수들은 고추의 지상부 생체 중 및 건물중과 유의성 있는 정의 상관을 보였으며, 특히 $Crop\;Circle^{TM}$에 의한 반사율 지수들이 가장 양호한 상관계수를 보였다. 또한 고추 수확기인 이식후 120일째 고추수량, 지상부 건물중, 그리고 잎의 질소 흡수량은 생육중반기 원격탐사 센서의 반사율 지수들과 유의성 있는 정의 상관을 보였고, 특히 이식후 80일째 측정된 $Crop\;Circle^{TM}$의 aNDVI는 가장 양호한 상관계수를 보였다. 이러한 결과로부터 이식후 80일째 aNDVI는 수확기 고추의 생체량 및 질소 시비수준을 신뢰성 있게 예측할 수 있었다. 따라서 비파괴 실시간 지상원격 탐사 반사율 지수는 고추의 생육중반기 질소관리를 위한 효율적 도구로 활용 가능할 것으로 생각되었다.