• Title/Summary/Keyword: Soil nutrient

Search Result 1,170, Processing Time 0.038 seconds

Effects of Ammonium Sulfate and Potassium Sulfate Fertilizer on Dry Matter Yield and Forge Quality of Sorghum X Sudangrsss Hybrid in Reclaimed Tidal Land (간척지에서 수수 X 수단그라스에 대한 유안 및 황산칼리비료 시용효과)

  • Shin Jae Soon;Lee Seung Heon;Kim Won Ho;Kim Jong Geun;Yoon Sei Hyung;Lim Keun Bal
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.4
    • /
    • pp.245-250
    • /
    • 2005
  • This experiment was conducted to compare the frech and dry matter yields and feed values of Sorghum$\times$Sudangrsss Hybrid in accordance with different nitrogen and potassium fertilizer sources at the Dae-Ho reclaimed tidal land, Korea from 2003 to 2004. Soil salt contents of ammonium sulfate plots(T3, T4, T5) were higher than that of the urea plot(T2), but that of potassium sulfate plot(T6) was the lowest. The fresh yields of ammonium sulfate plots(T3, T4, T5) and potassium sulfate plot(T6) were higher than that of the urea plot(T2) as $173\%,\;173\%,\;144\%\;and\;90\%$. respectively. The dry matter and total digestible nutrient(TBN) yields were similar tendency like the results of the fresh matter yields. The crude protein(CP), neutral detergent fiber(NDF) and acid detergent fiber(ADF) contents of ammonium sulfate plots(T3, T4, T5) were higher than those of urea plot(T2), but those of potassium sulfate plot(T6) were the lowest. On the other hand, TDN content in potassium sulfate plot(T6) was the highest. It was desirable to use ammonium sulfate$(20\~30kg\;N/10a)$ and potassium sulfate fertilizer$(15kg\;K_2O/10a)$ than those of urea and potassium chloride fertilizer on reclaimed tidal land in view of forage production and its feed value.

A Study on the Plant Planning in Landscape Space Considering the Characteristics of the Gender Determination of Pine Tree (소나무 성 결정 요인의 특성을 고려한 조경공간 식재계획)

  • Lee, Chang-Hun
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.38 no.1
    • /
    • pp.45-52
    • /
    • 2020
  • This study analyzed the components contained in the pine needles of first and second-year-olds to analyze the factors that the in vivo content of inorganic elements affects the sex determination of pine trees. In response, the plan for pine tree plant and maintenance was intended to be presented in consideration of the reproductive environment and physiological characteristics. The results are as follows. First, last year, when there were many encyclopedias, the analyzed N(%) content was found to be high. The nitrogen content of the previous year's soil was found to affect the production of the spheres the following year. This is believed to be possible to reduce the rate of Pine pollen produced in the new plant in the following year through a dispute over quality consumption in the spring of the previous year. Second, the weapons elements involved in the Pine cones and the generation of the Pine pollen in the new plant appeared to be P(%), K(%), Ca(%), and Fe(%). However, the nutrients from the previous year's leaves of Ca(%) and Fe(%) were found to have a low influence on the sex determination of first-year pine trees. Because Ca(%) and Fe(%) are not able to move nutrients accumulated in aging organs due to the nature of the components, feeding nutrients in the fall when the growth of the previous year's branches is reduced is expected to affect oral generation. Third, pine trees are extremely positive and Pine pollen is related to the time of the northeast wind. Therefore, it is believed that it would be good to be located in the northern direction, where the sunlight is good, in an outdoor space. In addition, it is important to use vaginal consumer products in spring and carry out a quarrel involving Mg and Fe during fall to reduce the effect of the Pine pollen, which is an outdoor plant. This is an important part of maintaining and managing pine trees in outdoor spaces as well as the sex determination of pine trees. This study suggested that plant planning, which derives the correlation between pine inorganic element content on sexual determination and takes into account the physiological characteristics of pine trees, is an important issue in the creation of outdoor space. Follow-up research on other factors affecting pine tree sex determination is expected.

Gibberellin Application Method and Concentration Affect to Growth, Runner, and Daughter Plant Production in 'Maehyang' Strawberry during Nursery Period (육묘기 '매향' 딸기의 생육, 런너 및 자묘 생산에 미치는 지베렐린 처리방법 및 농도의 영향)

  • Kang, Jae Hyeon;Kim, Hyeon Min;Kim, Hye Min;Jeong, Hyeon Woo;Lee, Hye Ri;Hwang, Hee Sung;Jeong, Byoung Ryong;Kang, Nam Jun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2018
  • This study was aimed to evaluate the effect of application method and concentration of gibberellin $A_3$ ($GA_3$) on the growth, runner production, and seedling quality of strawberry plants (Fragaria ${\times}$ ananassa Duch. cv. Maehyang) during nursery period. The mother plants of strawberry were transplanted in pot ($64{\times}27{\times}18cm$) filled with commercial growing medium on March 20, 2018. $GA_3$ concentration was applied as 0, 50, 100 or $200mg{\cdot}L^{-1}$ with spray or drench to 45 mL per plant at 4 weeks after transplanting, respectively. Nutrient solution was supplied with the EC $1.5dS{\cdot}m^{-1}$ after the transplanting and supplied 350 mL per pot twice a day (15 min per one time) after rooting. The growth characteristics of mother plants of strawberry were measured at 7 weeks after treatment, and growth characteristics of daughter plants of strawberry were measured at 10 weeks after treatment. Runner length and diameter of mother plant was the longest or thickest in the spray with $200mg{\cdot}L^{-1}$ than the other treatments, respectively. Soil-plant analysis development (SPAD) value of mother plant was the lowest in spray with $200mg{\cdot}L^{-1}$. However, leaf length, leaf width, and crown diameter showed no significant differences in all treatment among application method and concentration of $GA_3$. As the concentration of $GA_3$ increased, physiological disorder like stretchiness of crown occurred more. The physiological disorder was the most occurred in spray treatment with $200mg{\cdot}L^{-1}$, but drench treatment occurred less than spray treatment. The number of runners and daughter plants increased with increasing concentration of $GA_3$ regardless of application methods. In the growth characteristics of the daughter plants, leaf length and leaf width of first daughter plant, plant height, crown diameter, leaf area and SPAD value of second daughter plant, and plant height of third daughter plant were the significantly greatest in drench with $100mg{\cdot}L^{-1}$ treatment. This results indicate that growth and runner production of mother plants and growth of daughter plants of strawberry were the best achieved by drench application in the $100mg{\cdot}L^{-1}$ $GA_3$.

Changes of Nutrients Content and Natural Supplies by Suspended Soil Particle in lrrigation Water during the Rice Cultivation (논 관개수에 함유된 토사 중 영양물질의 함량변화와 천연공급량)

  • Han, Kang-Wan;Chon, Jae-Chul;Cho, Jae-Young;Kim, Seong-Jo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.399-403
    • /
    • 1997
  • Changes of nutrient material and natural supplies by sediment of irrigation water into 1.0ha of paddy field during the rice cultivation were investigated. TSS of the sediment contained irrigation water ranged 52.9${\sim}$125.6mg/L and content of organic matter showed 1.89${\sim}$2.33%. Content of T-N, $NH_4-N$ and $NO_3-N$ were 623.5${\sim}$1775.2, 22.9${\sim}$75.8 and 10.2${\sim}$72.1mg/kg respectively. Content of T-P and ortho-P were 186.7${\sim}$375.7 and 12.4${\sim}$38.9mg/kg respectively. The content of exchangeable canons, $Ca^{++},\;Mg^{++}\;Na^+\;and\;K^+$ were 435.3${\sim}$737.5, 127.3${\sim}$204.2, 36.6${\sim}$94.9 and 105.6${\sim}$232.9mg/kg respectively. Total content of heavy metals were 13.4 of Pb, 0.6 of Cd, 8.2 of Ni, 12.1 of Cu, 29.8 of Zn and 19.7mg/kg of Cr. During the period of rice cultivation, when supplied 4,250m^3 of an irrigation water into 1.0ha of paddy field, natural supplied 346.01kg of sediment, 7.11kg of organic matter, 0.50kg of T-N, 0.02㎏ of NH_4-N, 0.01kg of NO_3-N, 0.08kg of T-P and 0.01㎏ of Ortho-P. Also exchangeable $Ca^{++},\;Mg^{++}\;Na^+\;and\;K^+$ were supplied 0.21, 0.06, 0.02 and 0.06kg respectively. Loaded of the total heavy metal showed natural background level.

  • PDF

Manufacturing Fermented Rapeseed Meal Compost using Two Microbial Agents and the Effect of Their Application (유용 미생물 제제 이용 발효 유채박 비료 제조 및 시용 효과)

  • Lee, Ji-Eun;Park, Won;Kim, Kwang-Soo;Lee, Yong-Hwa;Kwon, Da-Eun;Moon, Youn-Ho;Cha, Young-Lok;Kang, Yong-Ku
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • Rapeseed meal, which is a byproduct of rapeseed oil extraction, improves crop productivity by supplying nutrients to the soil. The present study aimed to manufacture fermented rapeseed meal compost using two effective microbial agents and evaluate their efficiency as fertilizer. To types of fermented rapeseed meal, manufactured using either a bio-carrier or microbial agent, showed no differences in pH, electrical conductivity (EC), and total nitrogen content. However, the contents of $NH_4-N$ and $NO_3-N$ as inorganic nitrogen were increased by 5.6 times and 1.5 times, respectively, after 5 d of fermentation. Rapeseed meal fermented for 5 d was applied to tomato a basal fertilizer and after eight weeks, the plant height increased in all fermented rapeseed treatments compared to that in the chemical fertilizer treatment, and also the quantum yield of photosystem II (PS II) showed the same trend. The total nitrogen content of tomato leaves treated with a microbial fermented rapeseed meal was twice as high as that of that treated with a chemical fertilizer. It was confirmed that the increase in the tomato height was an effect of the rapeseed meal containing inorganic nitrogen, which can easily be absorbed by plants. From these results, it is considered that fermented rapeseed meal manufactured with an effective microbial agent for 5 d showed the highest inorganic nutrient content and greatest growth enhancement in tomato.

Development of integrated microbubble and microfilter system for liquid fertilizer production by removing total coliform and improving reduction of suspended solid in livestock manure (가축분뇨 내 대장균 제거와 부유물질 저감 효율 향상을 통한 추비 생산용 미세기포 부상분리와 마이크로 필터 연계 시스템 개발)

  • Jang, Jae Kyung;Lee, Donggwan;Paek, Yee;Lee, Taeseok;Lim, Ryu Gap;Kim, Taeyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.139-147
    • /
    • 2021
  • Livestock manure is used as an organic fertilizer to replace chemical fertilizers after sufficient fermentation in an aerobic bioreactor. On the other hand, liquid manure disposal problems occur repeatedly because soil spraying is restricted during the summer when the crops are growing. To use liquid fertilizer (LF) as an additional nutrient source for crops, it is necessary to reduce the amount of suspended solids (SS) in the liquid fertilizer and secure stability problems against pathogenic microorganisms. This study examined the effects of the simultaneous SS removal and E.coli sterilization in the LF using the microbubble (MB) generator (FeMgO catalyst insertion). The remaining SS were further removed using the integrated microbubble and microfilter system. During the floating process in the MB device, the SS were removed by 57.9%, and the coliform group was not detected (16,200→0 MPN/100 mL). By optimizing the HRT of the integrated system, the removal efficiency of the SS was improved by 92.9% under the 0.1h of HRT condition. After checking the properties of the treated LF, 64.5%, 70.1%, 54.9%, and 51.5% of the TCOD, SCOD, PO4-P, and TN, respectively, were removed. The treated effluent from such an integrated system has a lower SS content than that of the existing LF and does not contain coliforms; therefore, it can be used directly as an additional fertilizer.

The Demand Analysis of Water Purification of Groundwater for the Horticultural Water Supply (시설원예 용수 공급을 위한 지하수 정수 요구도 분석)

  • Lee, Taeseok;Son, Jinkwan;Jin, Yujeong;Lee, Donggwan;Jang, Jaekyung;Paek, Yee;Lim, Ryugap
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.510-523
    • /
    • 2020
  • This study analyzed groundwater quality in hydroponic cultivation facilities. Through this study, the possibility of groundwater use was evaluated according to the quality of the groundwater for hydroponic cultivation facilities. Good groundwater quality, on average, is pH 6.61, EC 0.27 dS/m, NO3-N 7.64 mg/L, NH4+-N 0.80 mg/L, PO4-P 0.09 mg/L, K+ 6.26 mg/L, Ca2+ 18.57 mg/L, Mg2+ 4.38 mg/L, Na+ 20.85 mg/L, etc. All of these satisfy the water quality standard for raw water in nutrient cultivation. But in the case of farmers experiencing problems with groundwater quality, most of the items exceeded the water quality standard. As a result of the analysis, it was judged that purifying groundwater of unsuitable quality for crop cultivation, and using it as raw water, was effective in terms of water quality and soil purification. If an agricultural water purification system is constructed based on the results of this study, it is judged that the design will be easy because the items to be treated can be estimated. If a purification system is established, it can use groundwater directly in the facility and for horticulture. These study results will be available for use in sustainable agriculture and environments.

Optimization of the Indole-3-Acetic Acid Production Medium of Pantoea agglomerans SRCM 119864 using Response Surface Methodology (반응표면분석법을 활용한 Pantoea agglomerans SRCM 119864의 Indole-3-acetic acid 생산 배지 최적화)

  • Ho Jin, Jeong;Gwangsu, Ha;Su Ji, Jeong;Myeong Seon, Ryu;JinWon, Kim;Do-Youn, Jeong;Hee-Jong, Yang
    • Journal of Life Science
    • /
    • v.32 no.11
    • /
    • pp.872-881
    • /
    • 2022
  • In this study, we optimized the composition of the indole-3-acetic acid (IAA) production medium using response surface methodology on Pantoea agglomerans SRCM 119864 isolated from soil. IAA-producing P. aglomerans SRCM 119864 was identified by 16S rRNA gene sequencing. There are 11 intermediate components known to affect IAA production, hence the effect of each component on IAA production was investigated using a Plackett-Burman design (PBD). Based on the PBD, sucrose, tryptone, and sodium chloride were selected as the main factors that enhanced the IAA production at optimal L-tryptophan concentration. The predicted maximum IAA production (64.34 mg/l) was obtained for a concentration of sucrose of 13.38 g/l, of tryptone of 18.34 g/l, of sodium chloride of 9.71 g/l, and of L-tryptophan of 6.25 g/l using a the hybrid design experimental model. In the experiment, the nutrient broth medium supplemented with 0.1% L-tryptophan as the basal medium produced 45.24 mg/l of IAA, whereas the optimized medium produced 65.40 mg/l of IAA, resulting in a 44.56% increase in efficiency. It was confirmed that the IAA production of the designed optimal composition medium was very similar to the predicted IAA production. The statistical significance and suitability of the experimental model were verified through analysis of variance (ANOVA). Therefore, in this study, we determined the optimal growth medium concentration for the maximum production of IAA, which can contribute to sustainable agriculture and increase crop yield.

Evaluation of Cultivation Characteristics according to NO3- Ratio of Nutrient Solution for Korean Melon in Hydroponic Culture (양액의 NO3- 비율이 수경재배 참외의 생육과 수량에 미치는 영향)

  • Do Yeon Won;Ji Hye Choi;Chang Hyeon Baek;Na Yun Park;Min Gu Kang;Young Jin Seo
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.249-255
    • /
    • 2023
  • Korean melon (Cucumis melo L.) is grown mostly in Northeast Asia area, and as a fruit mainly produced in Korea, the yield per unit area continues to improve, but the cultivation method is limited to soil cultivation, so it is necessary to develop hydroponic cultivation technology for scale and labor-saving is needed. As the ratio of NO3- increased, the plant height, the leaf length, the leaf width, and the internode length became longer and larger. On the other hand, the SPAD value decreased. The lower the ratio of NO3-, the faster the female flower bloom, and there was no difference in fruit maturity between treatments. There was no difference in the shape of fruit according to the ratio of NO3-, and the hardness was higher as the ratio of NO3- was lower. The total yield from March to July was KM3 5,650 kg/10a and KM1 4,439 kg/10a, 27% higher in KM3 and, in particular, 36% higher in quantity from March to May, when Korean melon prices were high season. Therefore, it was judged that it would be appropriate to supply NO3- suitable for hydroponic cultivation of Korean melon, which was formalized in December and produced from spring, at the level of 6.5 to 10 me·L-1.

Prediction of fertilizer demands up to the year of 2,000 from agronomic view points - Review and Discussion - (농경학적(農耕學的) 입장(立場)에서 본 서기(西紀) 2,000년(年)까지의 비료수요(肥料需要) 전망(展望) - 종합고찰(綜合考察) -)

  • Hong, Chong-Woon;Shin, Yong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.3
    • /
    • pp.211-220
    • /
    • 1976
  • The objective of this paper is to summarize and disicuss the results of studies for the prediction of fertilizer demands up to the year of 2000, from the agromic biew points. 1. The approximated demands of fertilizers figured out from the view point of nutrient requirement and fertilizer efficiency of major crops are 1,162,000M/T (N;554,100 M/T, $P_2O_5$; 360,100 M/T and $K_2O$, 247,000 M/T) at 1980, 1,471,400 M/T (N: 694,800 M/T, $P_2O_5$;465,400M/T and $K_2O$ ;311,200 M/T) at 1990 and 1,764,00 M/T (N;812,500 M/T, $P_2O_5$; 592,300 M/T and $K_2O$;359,200 M/T) at 2000${\cdots}{\cdots}$ (Approximation I) 2. Upon the basis of approximation on the yield levels of major crops per unit area and on the expansion of arable land, the demands of fertilizers at the years of 1980, 1990 and 2000 are predicted as 1,149,300 M/T (N;603,700 M/T $P_2O_5$; 305,500 M/T and $K_2O$, 240,100 M/T) 1,551,100 M/T(N:814,700M/T, $P_2O_5$;412,300 M/T and $K_2O$;324,00 M/T) and 2,253,800 M/T (N;1,183,800M/T, $P_2O_5$; 586,400M/T and $K_2O$, 470,900 M/T), respectively${\cdots}{\cdots}$(Approximation II) 3. When the recent relationships between the increases in yeid of major crops and the amounts of fertilizers for those crops per unit area are brought into consideration for the estimation of future demands of fertilizers, the predicted demands at the years of 1980, 1990 and 2000 are 1,287.600 M/T (N;677,100 M/T, $P_2O_5$; 342,000 M/T, and $K_2O$;268,500 M/T), 2,085,600M/T (N;1,096,700 M/T, $P_2O_5$;533,900 M/T, and $K_2O$;435,000 M/T and 3,380,600 M/T (N;1,777,800M/T, $P_2O_5$;897,800M/T and $K_2O$;705,000M/T) respectively (Approximation III) 4. Approximation I will be closer estimate under such condition that only rice will maintain self suficiency and other food crops will be covered by domestic production by around 50 percent, which is not desirable situation. 5. When higher self suficiency leveles of major food crops are sought through the introduction of improved varieties and expansion of cropping area and arable land by increased land utilization and reclamation of hillside land and tidal land, the Approximations II and III will become close to reality, If improved fertilizers and improved method of fertilizer applications are widely applied at the farmers fields to increase the fertilizer efficiency the former will be closer figure, if not, the latter may be better estimates.

  • PDF