Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.11.872

Optimization of the Indole-3-Acetic Acid Production Medium of Pantoea agglomerans SRCM 119864 using Response Surface Methodology  

Ho Jin, Jeong (Microbial Institute for Fermentation Industry (MIFI))
Gwangsu, Ha (Microbial Institute for Fermentation Industry (MIFI))
Su Ji, Jeong (Microbial Institute for Fermentation Industry (MIFI))
Myeong Seon, Ryu (Microbial Institute for Fermentation Industry (MIFI))
JinWon, Kim (Microbial Institute for Fermentation Industry (MIFI))
Do-Youn, Jeong (Microbial Institute for Fermentation Industry (MIFI))
Hee-Jong, Yang (Microbial Institute for Fermentation Industry (MIFI))
Publication Information
Journal of Life Science / v.32, no.11, 2022 , pp. 872-881 More about this Journal
Abstract
In this study, we optimized the composition of the indole-3-acetic acid (IAA) production medium using response surface methodology on Pantoea agglomerans SRCM 119864 isolated from soil. IAA-producing P. aglomerans SRCM 119864 was identified by 16S rRNA gene sequencing. There are 11 intermediate components known to affect IAA production, hence the effect of each component on IAA production was investigated using a Plackett-Burman design (PBD). Based on the PBD, sucrose, tryptone, and sodium chloride were selected as the main factors that enhanced the IAA production at optimal L-tryptophan concentration. The predicted maximum IAA production (64.34 mg/l) was obtained for a concentration of sucrose of 13.38 g/l, of tryptone of 18.34 g/l, of sodium chloride of 9.71 g/l, and of L-tryptophan of 6.25 g/l using a the hybrid design experimental model. In the experiment, the nutrient broth medium supplemented with 0.1% L-tryptophan as the basal medium produced 45.24 mg/l of IAA, whereas the optimized medium produced 65.40 mg/l of IAA, resulting in a 44.56% increase in efficiency. It was confirmed that the IAA production of the designed optimal composition medium was very similar to the predicted IAA production. The statistical significance and suitability of the experimental model were verified through analysis of variance (ANOVA). Therefore, in this study, we determined the optimal growth medium concentration for the maximum production of IAA, which can contribute to sustainable agriculture and increase crop yield.
Keywords
Indole-3-acetic acid; optimization; Pantoea agglomerans; response surface methodology;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Apine, O. A. and Jadhav, J. P. 2011. Optimization of medium for indole-3-acetic acid production using Pantoea agglomerans strain PVM. J. Appl. Microbiol. 110, 1235-1244.   DOI
2 Bamdad, H., Papari, S., Lazarovits, G. and Berruti, F. 2022. Soil amendments for sustainable agriculture: microbial organic fertilizers. Soil Use Manag. 38, 94-120.   DOI
3 Bang, S. H. 2021. Re-examine of non-traditional security in the time of covid19 : china's food security in the new era and south korea's strategy. KJPS 3, 219-244.   DOI
4 Bharucha, U., Patel, K. and Trivedi, U. B. 2013. Optimization of indole acetic acid production by Pseudomonas putida UB1 and its effect as plant growth-promoting rhizobacteria on mustard (Brassica nigra). Agric. Res. 2, 215-221.   DOI
5 Bhise, K. K. and Dandge, P. 2019. Alleviation of salinity stress in rice plant by encapsulated salt tolerant plant growth promoting bacteria Pantoea agglomerans strain KL and its root colonization ability. Arch. Agron. Soil Sci. 65, 1955-1968.   DOI
6 Bong, K. M., Kim, K. M., Seo, M. K., Han, J. H., Park, I. C., Lee, C. W. and Kim, P. I. 2017. Optimization of medium for the carotenoid production by Rhodobacter sphaeroids PS-24 using response surface methodology. Kor. J. Org. Agric. 25, 135-148.   DOI
7 Brito, A., Rocha, M., Kastovsky, J., Vieiral, J., Vieiral, C. P., Ramos, V., Correia, M., Santos, M., Mota, R., Roque, J., Pissarra, J., Melo, P. and Tamagnini, P. 2022. A new cyanobacterial species with a protective effect on lettuce grown under salinity stress: envisaging sustainable agriculture practices. J. Appl. Phycol. 34, 915-928.   DOI
8 Byeon, J. E., Lee, H. J., Ryoo, J. W. and Hwang, S. C. 2021. Effect of different liquid manure anaerobic digestates on the growth and yield of rice and the optimum application concentration. Kor. J. Crop Sci. 66, 97-104.   DOI
9 Choi, H. S. 2020. A study on the spread of covid-19 and the export restrictions of food and other goods. Jeonbuk Law Review 63. 517-544.
10 Economist impact. 2021. Global food security index 2021. Economist impact. London, United kingdom.
11 Ha, G. S., Kim, J. W., Im, S. A., Shin, S. J., Yang, H. J. and Jeong, D. Y. 2020. Application of response surface methodology in medium optimization to improve lactic acid production by Lactobacillus paracasei SRCM201474. J. Life Sci. 30, 522-531.   DOI
12 Kim, H. S., Lee, S. M., Oh, K. Y., Kim, J. Y., Lee, K. H., Lee, S. H. and Jang, J. S. 2021. Biochemical and cultural characterisitcs of mineral-solubilizing Acinetobacter sp. DDP346. J. Appl. Biol. Chem. 64, 333-341.   DOI
13 Ha, G. S., Yang, H. J., Jeong, S. J., Ryu, M. S., Kim, J. W., Yang, H. Y., Shin, S. J., Im, S. A., Seo, J. W., Jeong, S. Y. and Jeong, D. Y. 2018. Medium optimization for enhanced growth of Bacillus subtilis SRCM102046 possessing antibacterial activity using response-surface methodology. Kor. J. Food Preserv. 25, 613-624.   DOI
14 Kang, H. Y., Park, D. J., Lee, J. C., Kwon, M. K., Kim, S. B. and Kim, C. J. 2012. Isolation of Agrobacterium sp. BE516 from the root of Micanthus sacchariflorus and its plant growth promoting activity. J. Appl. Biol. Chem. 55, 129-133.   DOI
15 Kang, S. M., Adhikari, A., Lee, K. E., Khan, M. A., Khan, A. L., Shahzad, R., Dhungana, S. K. and Lee, I. J. 2020. Inoculation with indole-3-acetic acid producing rhizospheric Rhodobacter sphaeroids KE149 augments growth of adzuki bean plants under water stress. J. Microbiol. Biotechnol. 20, 717-725.
16 Kim, J. A., Song, J. S., Jeong, M. H., Park, S. Y. and Kim, Y. S. 2021. Biocontrol of rice diseases by microorganisms. Res. Plant Dis. 27, 129-136.   DOI
17 Kim, Y. S., Cho, S. H., Lee, H. S. and Lee, G. J. 2021. Growth effects of microbial fertilizer containing Bacillus amyloliquefaciens in lettuce. J. Korea Org. Resour. Recycl. 29, 15-24.
18 Kim, Y. S., Kim, S. Y., An, J. H., Sang, M. K., Weon, H. Y. and Song, J. Y. 2018. Changes in resident soil bacterial communities in response to inoculation of soil with beneficial Bacillus spp.. Microbiol. Biotechnol. Lett. 46, 253-260.   DOI
19 Kwon, H. D. and Song, H. G. 2014. Interactions between indole-3-acetic acid producing Acinetobacter sp. SW5 and growth of tomato plant. Kor. J. Microbiol. 50, 302-307.   DOI
20 Lee, J. C. and Whang, K. S. 2016. Optimization of indole3-acetic acid (IAA) production by Bacillus megaterium BM5. Kor. J. Soil Sci. 49, 461-468.
21 Lee, J. C., Oh, S. J., Kang, M. O., Kim, Y. H., Kim, D. J. and Lee, S. S. 2021. Improment of salt accumulated soil and crop growth using coal ash. Kor. J. Environ. Agric. 40, 83-91.   DOI
22 MAFRA. 2021. Major agricultural and livestock statistics 2021. MAFRA, Sejong, Korea.
23 Myo, E. M., Ge, B., Ma, J., Cui, H., Liu, B., Shi, L., Jiang, M. and Zhang, K. 2019. Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiol. 19, 155-168.   DOI
24 Roquemore, K. G. 1976. Hybrid designs for quadratic response surfaces. Technometrics 18, 419-423.   DOI
25 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
26 Silini-Cherif, H., Silini, A., Ghoul, M. and Yadav, S. 2012. Isolation and characterization of plant growth promoting traits of a rhizobacteria: Pantoea agglomerans Ima2. Pak. J. Biol. Sci. 15, 267-276.   DOI
27 Song, H. G. and Kim, W. J. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Kor. J. Microbiol. 48, 1-7.   DOI
28 Takashi, Y., Osamu, K., Kunio, I., Shigeaki, K., Tohru, K. and Yasuji, M. 1979. Stability of indole-3-acetic acid to autoclaving, aeration and light illumination. Agric. Biol. Chem. 43, 879-880.   DOI
29 Walpola, B. C., Noh, J. G., Kim, C. K., Kyung, K. C., Kong, W. S. and Yoon, M. H. 2013. Optimization of in- dole-3-acetic production by phosphate solubilization bacteria isolated from waste mushroom bed of Agaricus bisporus. J. Mushroom Sci. Prod. 11, 53-62.   DOI
30 Yoo, S. J., Lee, S. A., Weon, H. Y., Song, J. Y. and Sang, M. K. 2021. Assessment of rhizosphere microbial com- munity structure in tomato plants after inoculation of Bacillus species for inducing tolerance to salinity. Kor. J. Environ. Agric. 40, 49-59.   DOI
31 Yun, C. Y. and Cheong, Y. H. 2016. Isolation and characterization of phosphate solubilizing bacteria Pantoea species as a plant growth promoting rhizobacteria. J. Life Sci. 26, 1163-1168.   DOI