• Title/Summary/Keyword: Soil moisture value

Search Result 256, Processing Time 0.023 seconds

Evaluation of Compaction Quality using High-resolution Terrain Factor and Soil Moisture (고해상 지형정보와 토양수분을 활용한 다짐도 평가)

  • Kim, Sung-Wook;Go, Daehong;Lee, Yeong-Jae;Choi, Eun-Kyeong;Kim, Jin-Young;Kim, Ji-Sun;Cho, Jin-Woo
    • Journal of Environmental Science International
    • /
    • v.31 no.10
    • /
    • pp.869-881
    • /
    • 2022
  • In this study, a field study was conducted to investigate the relationship between high-resolution remote images and the volumetric moisture, and the number of compaction. Changes in the shape of the surface and soil moisture content were observed and correlated with the number of compactions using roller equipment. As the compaction is repeated, the surface is flattened and the terrain curvature decreases and converges to zero. In particular, the tangential curvature changes as the number of compactions increase. Due to soil compaction, the vegetation index changed from a positive to a negative value, and most of the test site area was homogenized with a negative index. This suggests a decrease in porosity and an increase in volumetric water content associated with increasing soil compaction. Soil moisture, measured using a frequency domain reflectometry(FDR) sensor, tends to increase proportionately with the number of vibration compactions, but the correlation between the number of compactions and soil moisture is unclear. This study suggests that while it is necessary to consider the reproducibility of the experiments performed, the compaction quality of the soil can be evaluated using high-resolution terrain factors and soil moisture.

Predicting Plant Biological Environment Using Intelligent IoT (지능형 사물인터넷을 이용한 식물 생장 환경 예측)

  • Ko, Sujeong
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1423-1431
    • /
    • 2018
  • IoT(Internet of Things) is applied to technologies such as agriculture and dairy farming, making it possible to cultivate crops easily and easily in cities.In particular, IoT technology that intelligently judge and control the growth environment of cultivated crops in the agricultural field is being developed. In this paper, we propose a method of predicting the growth environment of plants by learning the moisture supply cycle of plants using the intelligent object internet. The proposed system finds the moisture level of the soil moisture by mapping learning and finds the rules that require moisture supply based on the measured moisture level. Based on these rules, we predicted the moisture supply cycle and output it using media, so that it is convenient for users to use. In addition, in order to reduce the error of the value measured by the sensor, the information of each plant is exchanged with each other, so that the accuracy of the prediction is improved while compensating the value when there is an error. In order to evaluate the performance of the growth environment prediction system, the experiment was conducted in summer and winter and it was verified that the accuracy was high.

The Effect of Delayed Compaction on Unconfined Compressive Strength of Lime Soil Mixtures (석회혼합토의 지연다짐이 압축강도에 미치는 영향)

  • 김재영;이기춘
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.4
    • /
    • pp.4799-4804
    • /
    • 1978
  • In order to investigate the effect of delayed compaction on the strength of the lime soil mixtures, labroatory test with two kind of soils was performed at four levels of lime content, at five levels of water content, and at six love's of delayed times. The results are summarized as follows; 1. Maximum dry density and optimum moisture content decreased with increase of the delayed times. The decreasing rate of those values at the earlier delayed time were large, and those values showed almost constant after about four hours of delayed time. 2. According to the increase of the delayed time, the decreasing rate of maximum dry density and optimum moisture content was large ia S-2 sampl, but was a little in S-1 sample. 3. Unconfined compressive strength of lime soil mixtures decreased with the increase of the delayed time, and the decreasing rate of its strength increased with the increase of the lime content. 4. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of lime content and delayed time but its value was large in fine soil.

  • PDF

Studies on the Compressive Strength in Lime-Soil Mixtures -Influence of Lime-Content and Curing on Compressive Strength- (석회혼합토의 압축강도에 관한 연구 (제1보) -석회함량 및 갱생이 강도에 미치는 영향-)

  • 김성완
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.4
    • /
    • pp.2761-2769
    • /
    • 1972
  • The following results were obtained by the compression test of 3, 7, 14 and 28 days cured lime soil mixtures. The soil used in this test was clayey soil(sand : 20% silt : 45%, clay : 35%) and the rates of hydrated lime mixture for the dry weight of soil were 4, 8, 12, 19 and 20 percents. 1. The optimum moisture content increases and the maximum dry density decreases with the increase of the lime content. 2. The compacted moisture for the maximum strength in lime soil mixture increases with the increase of the lime content and the increase of curing periods. 3. The compressive strength increase of curing periods and its increasing ratio is largest at the 8 percent lime content. 4. The line content for the maximum strength decreases with increase of curing period and the largest strength shows at the 8 percent lime content when the curing period is over two weeks. 5. It seems to depend on the temperature effect that the compressive strength of lime soil mixtures cured in soil shows the lowest value. Accordingly, the effect of curing moisture does not influence to the strength of lime soil mixtures as much as the variation of curing temperature.

  • PDF

Studies on the Drying Mechanism of Stratified Soil-Comparison between Bare Surface and Grass plot- (성층토양의 건조기구에 관한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.1
    • /
    • pp.2913-2924
    • /
    • 1973
  • This study was to investigate the drying mechanism of stratified soil by investigating 'effects of the upper soil on moisture loss of the lower soil and vice versa' and at the same time by examining how the drying progressed in the stratified soils with bare surface and with vegetated surface respectively. There were six plots of the stratified soils with bare surface($A_1- A_6$ plot) and the same other six plots($B_1- B_5$ plot), with vegetated surface(white clover). These six plots were made by permutating two kinds of soils from three kinds of soils; clay loam(CL). Sandy loam(SL). Sand(s). Each layer was leveled by saturating sufficient water. Depth of each plot was 40cm by making each layer 20cm deep and its area. $90{\times}90(cm^2)$. The cell was put at the point of the central and mid-depth of the each layer in the each plot in order to measure the soil moisture by using OHMMETER. soil moisture tester, and movement of soil water from out sides was cut off by putting the vinyl on the four sides. The results obtained were as follow; 1. Drying progressed from the surface layer to the lower layer regardless of plots. There was a tendency thet drying of the upper soil was faster than that of the lower soil and drying of the plot with vegetated surface was also faster than that of the plot with bare surface. 2. Soil moisture was recovered at approximately the field capacity or moisture equivalent by infiltration in the course of drying, when there was a rainfall. 3. Effects of soil texture of the lower soil on dryness of the upper soil in the stratified soil were explained as follows; a) When the lower soil was S and the upper, CL or SL, dryness of the upper soils overlying the lower soil of S was much faster than that overlying the lower soil of SL or CL, because sandy soil, having the small field capacity value and playing a part of the layer cutting off to some extent capillary water supply. Drying of SL was remarkably faster than that of CL in the upper soil. b) When the lower soil was SL and the upper S or CL, drying of the upper soil was the slowest because of the lower SL, having a comparatively large field capacity value. Drying of CL tended to be faster than that of S in the upper soil. c) When the lower soil was CL and the upper S or SL, drying of the upper soil was relatively fast because of the lower CL, having the largest field capacity value but the slowest capillary conductivity. Drying of SL tended to be faster than that of S in the upper soil. 4. According to a change in soil moisture content of the upper soil and the lower soil during a day there was a tendency that soil moisture contents of CL and SL in the upper soil were decreased to its minimum value but that of S increased to its maximum value, during 3 hours between 12.00 and 15.00. There was another tendency that soil moisture contents of CL, SL and S in the lower soil were all slightly decreased by temperature rising and those in a cloudy day were smaller than those in a clear day. 5. The ratio of the accumulated soil moisture consumption to the accumulated guage evaporation in the plot with vegetated surface was generally larger than that in the plot with bare surface. The ratio tended to decrease in the course of time, and also there was a tendency that it mainly depended on the texture of the upper soil at the first period and the texture of the lower soil at the last period. 6. A change in the ratio of the accumulated soil moisture consumption was larger in the lower soil of SL than in the lower soil of S. when the upper soil was CL and the lower, SL and S. The ratio showed the biggest figure among any other plots, and the ratio in the lower soil plot of CL indicated sligtly bigger than that in the lower soil plot of S, when the upper soil was SL and the lower, CL and S. The ratio showed less figure than that of two cases above mentioned, when the upper soil was S and the lower CL and SL and that in the lower soil plot of CL indicated a less ratio than that in the lower soil plot of SL. As a result of this experiments, the various soil layers wero arranged in the following order with regard to the ratio of the accumulated soil moisture consumption: SL/CL>SL/S>CL/SL>CL/S$\fallingdotseq$S/SL>S/CL.

  • PDF

Relationship between Soil Color Characteristics and Measurement Values by Colorimeter (토양의 색 특성과 색차계 측정치의 상호관계)

  • Kim, Ki-In;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.77-86
    • /
    • 2002
  • Soil color characteristics were measured by a optical instrument, colorimeter, comparing with the conventional Munsell color chart and related to the chemical properties of soils. Total of the 67 experimental soils were taken from tobacco fields that located at Cheongwon, Enmseong, Boeun, Goesan, Jincheon, and Chungju countries in Chungbuk Province having the 29 soil series including Samgag. The values of L, a, and b measured by colorimeter were closely related with hue, value, and chroma of Munsell color chart, respectively, indicating the quantitative measurement of soil color characteristics. The standard deviations in measurement for L, a, and b values was smaller in soil sample passed by 0.5 mm sieve than 2 mm sieve, suggesting that soil particle size less than 0.5 mm was better condition for colorimeter measurement. The values of L and b measured by colorimeter showed a tendency to decrease as increase of soil moisture content but nearly on difference with moisture condition for the value of a. However, correlation coefficient between air dry samples and wet soil samples(soil moisture retension of -10 hPa) for measurements of L, a and b value were more than 0.9 showing the same tendency in measurement. Consequently, air dry soil passed by 0.5 mm sieve was recommended to desirable conditions for stable measurement by colorimeter. The measured values by colorimeter were significantly correlated with organic matter, CEC, exchangeable Ca and Mg, showing the highest correlation coefficient between L value and organic matter.

Effect of precipitation on soil respiration in a temperate broad-leaved forest

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Joo-Yeon;Chun, Jung-Hwa;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.77-84
    • /
    • 2018
  • Background: For understanding and evaluating a more realistic and accurate assessment of ecosystem carbon balance related with environmental change or difference, it is necessary to analyze the various interrelationships between soil respiration and environmental factors. However, the soil temperature is mainly used for gap filling and estimation of soil respiration (Rs) under environmental change. Under the fact that changes in precipitation patterns due to climate change are expected, the effects of soil moisture content (SMC) on soil respiration have not been well studied relative to soil temperature. In this study, we attempt to analyze relationship between precipitation and soil respiration in temperate deciduous broad-leaved forest for 2 years in Gwangneung. Results: The average soil temperature (Ts) measured at a depth of 5 cm during the full study period was $12.0^{\circ}C$. The minimum value for monthly Ts was $-0.4^{\circ}C$ in February 2015 and $2.0^{\circ}C$ in January 2016. The maximum monthly Ts was $23.6^{\circ}C$ in August in both years. In 2015, annual precipitation was 823.4 mm and it was 1003.8 mm in 2016. The amount of precipitation increased by 21.9% in 2016 compared to 2015, but in 2015, it rained for 8 days more than in 2016. In 2015, the pattern of low precipitation was continuously shown, and there was a long dry period as well as a period of concentrated precipitation in 2016. 473.7 mm of precipitation, which accounted for about 51.8% of the precipitation during study period, was concentrated during summer (June to August) in 2016. The maximum values of daily Rs in both years were observed on the day when precipitation of 20 mm or more. From this, the maximum Rs value in 2015 was $784.3mg\;CO_2\;m^{-2}\;h^{-1}$ in July when 26.8 mm of daily precipitation was measured. The maximum was $913.6mg\;CO_2\;m^{-2}\;h^{-1}$ in August in 2016, when 23.8 mm of daily precipitation was measured. Rs on a rainy day was 1.5~1.6 times higher than it without precipitation. Consequently, the annual Rs in 2016 was about 12% higher than it was in 2015. It was shown a result of a 14% increase in summer precipitation from 2015. Conclusions: In this study, it was concluded that the precipitation pattern has a great effect on soil respiration. We confirmed that short-term but intense precipitation suppressed soil respiration due to a rapid increase in soil moisture, while sustained and adequate precipitation activated Rs. In especially, it is very important role on Rs in potential activating period such as summer high temperature season. Therefore, the accuracy of the calculated values by functional equation can be improved by considering the precipitation in addition to the soil temperature applied as the main factor for long-term prediction of soil respiration. In addition to this, we believe that the accuracy can be further improved by introducing an estimation equation based on seasonal temperature and soil moisture.

The analysis of drought susceptibility using soil moisture information and spatial factors involved in satellite imagery (위성영상의 토양수분 정보와 공간적 요인을 고려한 가뭄 민감도 분석)

  • 박은주;황철수;성정창
    • Spatial Information Research
    • /
    • v.10 no.3
    • /
    • pp.481-492
    • /
    • 2002
  • The severity and spatial Patterns of spring drought on the croplands arc investigated using satellite imagery(Landsat ETM+). It is necessary to analyze the area droughty conditions in order to decrease the damage and make the efficient policies. In this context, the information about soil moisture levels, which were fatal factors to the crop growth, was acquired from wetness calculated from Tasseled cap transformation. We confirmed that the wetness values have a strong correlation with NDVI and the principal components. The result showed that the intensity of vegetation covering the surface could be understood as the index of the impacts of drought on croplands and these relationships were effective to classify dry areas in satellite imagery.

  • PDF

Soil Emission Measurements of N2O, CH4 and CO2 from Intensively Managed Upland Cabbage Field (배추 밭에서의 N2O, CH4, CO2 토양배출량 측정 및 특성 연구: 주요온실가스 배출량 측정 및 지표생태변화에 따른 특성 연구)

  • Kim, Deug-Soo;Na, Un-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.313-325
    • /
    • 2011
  • From October 2009 to June 2010, major greenhouse gases (GHG: $N_2O$, $CH_4$, $CO_2$) soil emission were measured from upland cabbage field at Kunsan ($35^{\circ}$56'23"N, $126^{\circ}$43'14"E), Korea by using closed static chamber method. The measurements were conducted mostly from 10:00 to 18:00LST during field experiment days (total 28 days). After analyzing GHG concentrations inside of flux chamber by using a GC equipped with a methanizer (Varian CP3800), the GHG fluxes were calculated from a linear regression of the changes in the concentrations with time. Soil parameters (e.g. soil moisture, temperature, pH, organic C, soil N) were also measured at the sampling site. The average soil pH and soil moisture were ~pH $5.42{\pm}0.03$ and $70.0{\pm}1.8$ %WFPS (water filled pore space), respectively. The ranges of GHG flux during the experimental period were $0.08\sim8.40\;mg/m^2{\cdot}hr$ for $N_2O$, $-92.96\sim139.38mg/m^2{\cdot}hr$ for $CO_2$, and $-0.09\sim0.05mg/m^2{\cdot}hr$ for $CH_4$, respectively. It revealed that monthly means of $CO_2$ and $CH_4$ flux during October (fall) were positive and significantly higher than those (negative value) during January (winter) when subsoil have low temperature and relatively high moisture due to snow during the winter measurement period. Soil mean temperature and moisture during these months were $17.5{\pm}1.2^{\circ}C$, $45.7{\pm}8.2$%WFPS for October; and $1.4{\pm}1.3^{\circ}C$, $89.9{\pm}8.8$ %WFPS for January. It may indicate that soil temperature and moisture have significant role in determining whether the $CO_2$ and $CH_4$ emission or uptake take place. Low temperature and high moisture above a certain optimum level during winter could weaken microbial activity and the gas diffusion in soil matrix, and then make soil GHG emission to the atmosphere decrease. Other soil parameters were also discussed with respect to GHG emissions. Both positive and negative gas fluxes in $CH_4$ and $CO_2$ were observed during these measurements, but not for $N_2O$. It is likely that $CH_4$ and $CO_2$ gases emanated from soil surface or up taken by the soil depending on other factors such as background concentrations and physicochemical soil conditions.

Study on the Soil Compaction (part 3) on Soil Compaction (흙의 다짐에 관한 연구(3) <10번체 잔류량이 다짐에 미치는 영향>)

  • 강문묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.2
    • /
    • pp.1927-1936
    • /
    • 1970
  • This is a study on the influence of percent retaining of No. 10 sieve on soil compaction. Reviewing the test values in part 1 and part 2, a relative equation to predict maximum dry density and optimum moisture content was induced. Results of the study are as follow; 1. Maximum dry density increases according as percent retatining of No. 10 sieve increase untill 40%, but it decreases in more than 50%. 2. Maximum dry density has the greatest value at 25%, also it decreases according to increase or decrease at 25% in percent passing of No. 200 sieve. 3. Grain size distribution that Maximum dry density is largest, is 40% in 4.76mm to 2.0mm, 35% in 2.0mm to 0.074mm, 25% in lese than 0.074mm. 4. Correlation betwesn Maximum dry density and optimum moisture content made a curved line. The deviation between maximum dry density to be predicted from optimum moisture content and test values, is less than about 5%. 5. Range of deviation between optimum moisture content to be predicted from classification area and uniformity coefficient isless than about 20%, which belongs to range of moisture content that is correspondent with 95% of maximum dry density, generally.

  • PDF