DOI QR코드

DOI QR Code

Predicting Plant Biological Environment Using Intelligent IoT

지능형 사물인터넷을 이용한 식물 생장 환경 예측

  • Ko, Sujeong (Department of Computer Software, Induk University)
  • 고수정 (인덕대학교 컴퓨터소프트웨어학과)
  • Received : 2018.06.20
  • Accepted : 2018.07.25
  • Published : 2018.07.31

Abstract

IoT(Internet of Things) is applied to technologies such as agriculture and dairy farming, making it possible to cultivate crops easily and easily in cities.In particular, IoT technology that intelligently judge and control the growth environment of cultivated crops in the agricultural field is being developed. In this paper, we propose a method of predicting the growth environment of plants by learning the moisture supply cycle of plants using the intelligent object internet. The proposed system finds the moisture level of the soil moisture by mapping learning and finds the rules that require moisture supply based on the measured moisture level. Based on these rules, we predicted the moisture supply cycle and output it using media, so that it is convenient for users to use. In addition, in order to reduce the error of the value measured by the sensor, the information of each plant is exchanged with each other, so that the accuracy of the prediction is improved while compensating the value when there is an error. In order to evaluate the performance of the growth environment prediction system, the experiment was conducted in summer and winter and it was verified that the accuracy was high.

사물인터넷 기술은 농업, 낙농업 등의 기술에 적용되어 도시에서도 간편하고 손쉽게 농작물을 재배하는 것을 가능하게 한다. 특히, 농업 부문에서 재배작물의 생장환경에 맞도록 지능적으로 판단하고 제어하는 사물인터넷 기술이 발전되고 있다. 본 논문에서는 지능형 사물인터넷을 이용하여 식물의 수분 공급 주기를 학습함으로써 식물의 생장 환경을 예측하는 방법을 제안한다. 제안된 시스템은 토양 수분량의 수분단계를 지도 학습으로 찾아내고, 측정된 수분단계를 기반으로 수분 공급의 규칙을 찾아낸다. 이러한 규칙을 기반으로 수분 공급 주기를 예측하고, 미디어를 이용하여 출력함으로써 사용자가 사용하기에 편리하도록 구현하였다. 또한, 센서가 측정하는 값의 오차를 줄이기 위하여 식물간에 서로 정보를 교환함으로써 오류가 있는 경우의 값을 보완해 가면서 예측의 정확도를 높였다. 생장 환경 예측 시스템의 성능을 평가하기 위하여 토양 수분 공급량이 현격히 차이가 있는 여름과 겨울로 나누어서 실험하였으며, 정확도가 높음을 검증하였다.

Keywords

References

  1. H. Kim, B. Park, and Y. Cho, "Smart Outlet System for Single-person Household based on IoT(Internet of Things)", Journal of Digital Contents Society, Vol. 18, No. 5, pp. 895-904, 2017. https://doi.org/10.9728/DCS.2017.18.5.895
  2. P. J. Sarkar, S. Chanagala, "A Survey on IOT based Digital Agriculture Monitoring System and Their impact on optimal utilization of Resources", IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) , Vol. 11, Issue 1, pp. 1-4, 2016.
  3. A Tzounis, N Katsoulas, T Bartzanas, C Kittas, "Internet of Things in agriculture, recent advances and future challenges", Biosystems Engineering, Vol. 164, pp. 31-48, 2017. https://doi.org/10.1016/j.biosystemseng.2017.09.007
  4. M.S. Mahdavinejad, et al., Machine learning for Internet of Things data analysis: a survey, Digital Communications and Networks, https://doi.org/10.1016/j.dcan.2017.10.002, 2018.
  5. Muhammad, Abubakr , Haider, Bilal , Ahmad, Zahoor, "IoT Enabled Analysis of Irrigation Rosters in the Indus Basin Irrigation System", IProcedia engineering, Vol. 154 , pp. 229-235, 2016. https://doi.org/10.1016/j.proeng.2016.07.457
  6. H. Kuruva and B. Sravani, " Remote Plant Watering And Monitoring System Based On Iot", International Journal For Technological Research In Engineering, Vol. 4, Issue 4, pp. 668-671, 2016.
  7. A. Khan, S. Singh, and S. Shukla, "Automatic Irrigation System Using internet Of Things," International Journal for Research in Applied Science & Engineering Technology (IJRASET), Vol. 4, Issue 3, pp. 1032-1036, 2016.
  8. Choi, Wonhyuk, and Ji Min-Seok, "A Study on the Development of Smart Farm System Using Wireless Communication," Korea Entertainment Industry Journal, Vol. 8, No. 4, pp. 387-393, 2014. https://doi.org/10.21184/jkeia.2014.12.8.4.387
  9. Yeon-hee Lee, Yoong-Sik Yoo, and Cheol-sik Pyo, "Big Data Technology Status for Intelligent IoT", Instrumentation Technology, Korea Electronics and Telecommunications Research Institute, Vol. 9, pp. 118-123, 2017.
  10. H. Mora, S. Teresa, Maria, D. Gil, and J. Magnus, "Collaborative Working Architecture for IoT-Based Applications", Sensors, Vol. 18, No. 6, http://dx.doi.org/10.3390/s18061676, 2018.
  11. J. Mills, T. Metcalfe, M. Lochrie, and A. Gradinar, "Rare Occurrence: Exploring IoT, news media, calm interfaces and infrequent interactions", Proceedings of the 30th International BCS Human Computer Interaction Conference, http://dx.doi.org/10.14236/ewic/HCI2016.60 2016.
  12. Sang-Kyun Kim, "Media-centric Intelligent Things Evolving into the Internet", Korea Society of Mechanical Education, Vol. 22, No. 3, pp. 14-19, 2015.
  13. Tom M. Mitchell, Machine Learning, McGraw-Hill Companies, 1997.
  14. S. Rajeswari, K. Suthendran, K. Rajakumar, and K. Mythili, "A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics", International Conference on Intelligent Computing and Control (I2C2), Vol. 118, pp. 365-369, 2018.
  15. Seok-Jong Yoo, "Comprehensive Performance Evaluation Model for Collaborative Filtering", Journal of Korea Computer Information Society, Vol. 17, No. 4, pp. 83-90 2012.
  16. D.R. Taaffe , J. Thompson, G. Butterfield, and R. Marcus, "Accuracy of equations to predict basal metabolic rate in older women", Journal of the American Dietetic Association, Vol. 95, No. 12, pp. 1387-1392, 1995. https://doi.org/10.1016/S0002-8223(95)00366-5

Cited by

  1. A Study on Standard Ocean Lighted Buoy Type System for Real-time Ocean Meteorological Observation vol.19, pp.9, 2018, https://doi.org/10.9728/dcs.2018.19.9.1739