Relationship between Soil Color Characteristics and Measurement Values by Colorimeter

토양의 색 특성과 색차계 측정치의 상호관계

  • Kim, Ki-In (College of Agriculture and Biological Science, South Dakota State University) ;
  • Hong, Soon-Dal (College of Agriculture, Chungbuk National University)
  • Received : 2002.03.02
  • Accepted : 2002.02.06
  • Published : 2002.04.30

Abstract

Soil color characteristics were measured by a optical instrument, colorimeter, comparing with the conventional Munsell color chart and related to the chemical properties of soils. Total of the 67 experimental soils were taken from tobacco fields that located at Cheongwon, Enmseong, Boeun, Goesan, Jincheon, and Chungju countries in Chungbuk Province having the 29 soil series including Samgag. The values of L, a, and b measured by colorimeter were closely related with hue, value, and chroma of Munsell color chart, respectively, indicating the quantitative measurement of soil color characteristics. The standard deviations in measurement for L, a, and b values was smaller in soil sample passed by 0.5 mm sieve than 2 mm sieve, suggesting that soil particle size less than 0.5 mm was better condition for colorimeter measurement. The values of L and b measured by colorimeter showed a tendency to decrease as increase of soil moisture content but nearly on difference with moisture condition for the value of a. However, correlation coefficient between air dry samples and wet soil samples(soil moisture retension of -10 hPa) for measurements of L, a and b value were more than 0.9 showing the same tendency in measurement. Consequently, air dry soil passed by 0.5 mm sieve was recommended to desirable conditions for stable measurement by colorimeter. The measured values by colorimeter were significantly correlated with organic matter, CEC, exchangeable Ca and Mg, showing the highest correlation coefficient between L value and organic matter.

삼각통을 포함하여 29개 토양통으로 분포되는 연초 경작지 67개 토양에 대하여 토양의 색 특성은 광학적 기기에 의해 측정되는 색차계 방법과 육안관찰에 의해 비색 평가되는 Munsell color chart 방법으로 비교되었고, 또한 토양의 화학성과의 상호관계가 검토되었다. 색차계로 측정한 토양의 색 특성 L, a 및 b 값은 Munsell color chart의 명도(V), 채도(C), 및 색상(H)과 밀접하게 관련되며 정량적 수치로 표현되었다. 토양 색 측정치의 표준편차는 2mm 체 통과시료보다 0.5mm 체 통과시료에서 적었다. 토양 색의 L, 및 b 값은 수분함량이 증가함에 따라 감소되는 경향이었으나 a 값은 수분함량의 변화에 따라 차이가 없이 비슷하였다. 그러나 풍건조건과 습윤조건(-10hPa)에서 측정된 토양의 L, a, b 값 각각의 상관계수는 r=0.90 이상으로 고도로 유의성 있는 정의 상관을 보였다. 따라서 토양 색의 측정은 일정한 수분 조건인 풍건토 0.5mm 체 통과시료에서 측정하는 것이 바람직할 것으로 생각되었다. 토양의 색 특성은 유기물함량, 양이온치환용량, 치환성 석회 및 고토 등과 유의성 있는 상관을 보였으며 특히 L 값은 유기물 함량과 가장 밀접한 관계를 보였다.

Keywords

References

  1. A. L. Ulery and R. C. Graham. 1993. Forest free effects on soil color and texture. 57 : 135-140 https://doi.org/10.2136/sssaj1993.03615995005700010026x
  2. American Society for Testing and Materials. 1980.Standard practice for specifying color by the Munsell system. ASTM standard D 1535-96. ASTM, Philadelphia
  3. Donald F. Post, R.B. Bryant. A.L. Batchily, and A.R. Huete, S.J. Levine, M.D. Mays, R. Escadafal. 1993. Correlations between field and laboratory measurments of soil color. SSSA Special Publication no. 31 : 35-49
  4. Darrell G. Schulze, Jeffrey L. Nagel, George E. Van Scoyoc. Tracey L. Henderson. Marion F. Baumgardner, D.E. Stott. 1993. Significance of organic matter in determining soil colors. SSSA Special Publication no. 31: 71-90
  5. F. R. Magdoff and R, J. Bartlett. 1985. Soil pH buffering revisted. Soil Sci. Soc. Am. J. 49 : 145-148 https://doi.org/10.2136/sssaj1985.03615995004900010029x
  6. Femandez, R.N., and D.G. Schulze. Coffin, and G.E. Van Scoyoc. 1988. Color organic matter, and pesticide adsorption relationships in a soil landscape. Soil Sci. Soc. Am. J. 52 : 1023-1026 https://doi.org/10.2136/sssaj1988.03615995005200040023x
  7. Fox. R.H. and W.P. Piekielek. 1978. Field testing of several nitrogen availability indexes. Soil Sci. Soc. Am. J. 42 : 747-750 https://doi.org/10.2136/sssaj1978.03615995004200050018x
  8. H. K. Wutscher and T. Gregory Mccollum. 1993. Rapid. objective measurement of soil color with a tristimulus colorimeter. Commun. Soil Sci. Plant Anal. 24 : 2165-2169 https://doi.org/10.1080/00103629309368945
  9. Jose Alexandre M. Dematte, and Gilberto J. Garcia. 1999. Alteration of soil properties through a weathering sequence as evaluated by spectral reHectance. Soil Sci Soc. Am. J. 63 : 327-342 https://doi.org/10.2136/sssaj1999.03615995006300020010x
  10. J. Torrent and V. Barron. 1993. Laboratory measurement of soil color: Theory and practice. SSSA Special Publication no. 31 : 21-33
  11. L. S. Galvao and I. Vitorello. 1998. Role of organic matter in obliterating the effects of iron on spectral reflectance and colour of Brazilian tropical soils. International Journal of Remote Sensing. 19 : 1969-1979 https://doi.org/10.1080/014311698215090
  12. Mathews, H.L., R.L. Cunningham. and G.W. Petersen. 1973. Spectral reflectance of selected Pennsylvania soils. . 37 : 421-424 https://doi.org/10.2136/sssaj1973.03615995003700030031x
  13. Nandish M. Mattikalli. 1997. Soil color modeling for the visible and near-infrared bands of landsat sensors using laboratory spectral measurements. International Journal of Remote Sensing. 59 : 14-28 https://doi.org/10.1016/S0034-4257(96)00075-2
  14. 농업기술연구소. 1988. 토양화학분석법(토양, 식물체, 토양미생물)
  15. 농업기술연구소. 1986. 韓國의 田土壤(附 林地土壤)
  16. Page, N. R. 1974. Estimation of organic matter in Atlantic coastal plain soils with a color difference meter. Agron. J. 66 : 652-653 https://doi.org/10.2134/agronj1974.00021962006600050014x
  17. 홍순달. 1998. 토양검정에 의한 시설재배 토마토의 적정 시비량 추천. 한국토양비료학회지. 31(4) : 350-358