• Title/Summary/Keyword: Soil mixing method

Search Result 195, Processing Time 0.027 seconds

An Experimental Study on the Optimum Mix Design and Site Application Case of Soil Mixing Wall for Trench Stability (구벽안정성을 위한 SMW 최적배합비 및 현장적용 사례에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.419-426
    • /
    • 2015
  • The purpose of this study is to investigate experimentally the optimum mix design and site application case of soil mixing wall (SMW) method which is cost-effective technique for construction of walls for cutoff wall and excavation support as well as for ground improvement before constructing LNG storage tank typed under-ground. Considering native soil condition in site, main materials are selected ordinary portland cement, bentonite as a binder slurry and also it is applied $1,833kg/m^3$ as an unit volume weight of native soil, Variations for soil mixing wall are as followings ; (1) water-cement ratio 4cases (2) mixing velocity (rpm) 3levels (3) bleeding capacity and ratio, compressive strength in laboratory and site application test. As test results, bleeding capacity and ratio are decreased in case of decreasing water-cement ratio and increasing mixing velocity. Required compressive strength (1.5 MPa) considering safety factors in site is satisfied with the range of water-cement ratio 150% below, and test results of core strength are higher than those of specimen strength in the range of 8~23% by actual application of element members including outside and inside in site construction work. Therefore, optimum mix design of soil mixing wall is proposed in the range of unit cement $280kg/m^3$, unit bentonite $10kg/m^3$, water-cement ratio 150% and mixing velocity 90rpm and test results of site application case are satisfied with the required properties.

Laboratory Study on Changes in Hydraulic Conductivity and Chemical Properties of effluent of Soil During Desalinization (간척지(干拓地) 제염과정(除鹽過程)에서 일어나는 토양(土壤)의 수리전도도(水理傳道度)와 유출액(流出液)의 화학적(化學的) 특성변화(特性變化)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Yoo, Sun-Ho;Lee, Sang-Mo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.1
    • /
    • pp.3-10
    • /
    • 1988
  • A laboratory study was carried out to investigate the effects of application level of soil amendments, mixing method of soil amendments, and compost treatment on desalinization by examining the changes in hydraulic conductivity and chemical properties of effluent of the soil during desalinization. 1. The treatment of soil amendments brought about the increase in hydraulic conductivity. 2. The higher the application level of a soil amendment, the higher the hydraulic conductivity and the shorter the time elapsed to complete the desalinization. 3. Complete mixing of calcium compounds was more effective for desalinization than surface mixing. 4. The compost treatment induced the rise in pH and therefore brought about the remarkable drop in hydraulic conductivity. 5. During the desalinization, the changes in physical and chemical properties of the soil were influenced by the kind and application level of soil amendments, mixing method of soil amendment, and compost treatment.

  • PDF

Utilization of carrageenan as an alternative eco-biopolymer for improving the strength of liquefiable soil

  • Regina A. Zulfikar;Hideaki Yasuhara;Naoki Kinoshita;Heriansyah Putra
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.221-230
    • /
    • 2023
  • The liquefaction of soil occurs when a soil loses strength and stiffness because of applied stress, such as an earthquake or other changes in stress conditions that result in a loss of cohesion. Hence, a method for improving the strength of liquefiable soil needs to be developed. Many techniques have been presented for their possible applications to mitigate liquefiable soil. Recently, alternative methods using biopolymers (such as xanthan gum, guar gum, and gellan gum), nontraditional additives, have been introduced to stabilize fine-grained soils. However, no studies have been done on the use of carrageenan as a biopolymer for soil improvement. Due to of its rheological and chemical structure, carrageenan may have the potential for use as a biopolymer for soil improvement. This research aims to investigate the effect of adding carrageenan on the soil strength of treated liquefiable soil. The biopolymers used for comparison are carrageenan (as a novel biopolymer), xanthan gum, and guar gum. Then, sand samples were made in cylindrical molds (5 cm × 10 cm) by the dry mixing method. The amount of each biopolymer was 1%, 3%, and 5% of the total sample volume with a moisture content of 20%, and the samples were cured for seven days. In terms of observing the effect of temperature on the carrageenan-treated soil, several samples were prepared with dry sand that was heated in an oven at various temperatures (i.e., 20℃ to 75℃) before mixing. The samples were tested with the direct shear test, UCS test, and SEM test. It can increase the cohesion value of liquefiable soil by 22% to 60% compared to untreated soil. It also made the characteristics of the liquefiable increase by 60% to 92% from very loose sandy soil (i.e., ϕ=29°) to very dense sandy soil. Carrageenan was also shown to have a significant effect on the compressive strength and to exceed the liquefaction limit. Based on the results, carrageenan was found to have the potential for use as an alternative biopolymer.

A Study on the Mixing Ratio of Food Waste on Slope Re-vegetation Base Materials (음식쓰레기를 활용한 비탈면 녹화기술의 식생기반재 배합비율에 관한 연구)

  • Cho, Dong-Gil;Jeon, Gi-Seong;Shim, Yun-Jin;Kim, Duck-Ho;Do, Jong-Nam;Park, Mi-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.6
    • /
    • pp.215-226
    • /
    • 2015
  • This study introduced food waste into re-vegetation base materials for surface loss recovery of carry-away highway cut slope. The object of this study is to derive the mixing ratio of food waste by conducting a test installation, monitoring, analysis and evaluation for recovery of carry-away highway cut slope. The following items were investigated and analyzed each experimental zone to draw mixing ratio of re-vegetation base materials and food waste : the physical and chemical properties of the vegetation base materials, soil-hardness, soil-humidity, left out and the collapsed point, established number of trees, species richness of grass species and tree species, coverage, pest status, and invasion of disturbance species. The re-vegetation method was evaluated by each experiment zone which has different mixing ratio. As a result, experiment zone A was rated 45 points out of 60 rating points as the best re-vegetation method. However, this study result has been derived from one construction and short-term monitoring. In order to derive the suitable and dependable mixing ratio, conducting an objective re-vegetation method evaluation and long-term experiment and monitoring is required.

Analysis of arsenic in contaminated soil SRM by two extraction methods: Ultrasonic extraction method and Microwave extraction method

  • Kim, Youn-Tae;Yoon, Hyeon;Shin, Mi-Young;Yoon, Cheol-Ho;Woo, Nam-Chil
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.227-230
    • /
    • 2004
  • Two extraction techniques, Ultrasonic and Microwave extraction method, were tested for the determination of arsenic in contaminated soil SRM (Montana Soil). The extraction mixture was prepared by mixing 1 M ortho-phosphoric acid and 0.1 M ascorbic acid. This extractant was known to preserve arsenic species. The appropriate extraction time was 10 min to 20 min and the recovery rate was about 80%. A coupled system, SPE-HG-ICP-AES, was used for the determination of inorganic arsenic species. The detection limit was around 2 $\mu\textrm{g}$/1 and the linearity of calibration curve was better than $R^2$=0.99.

  • PDF

The Study on the Design and Numerical Analysis of Self-Supported Retaining Wall with Cement Treated Soil by Vertical Mixing Method(V-DCM) (연직교반혼합처리(V-DCM) 연속벽을 이용한 자립식 흙막이공법의 설계 및 해석에 관한 연구)

  • Byung-Il Kim;Kang-Han Hong;Young-Seon Kim;Jin-Hae Kim;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.9-23
    • /
    • 2023
  • In this study, the design methods of self-supported retaining wall with cement treated soil constructed by vertical mixing method (trencher mixing method, V-DCM), which are using in domestic and foreign field, are investigated, and the characteristics of it are presented with comparing the results of numerical analysis with the drainage and construction conditions. The results indicated that the method 1 (total stress analysis) is the most aggressive, and method 2 (effective stress analysis) and method 3 are similar in the internal stress, and the stress and the horizontal displacement are effected on the soil type and drainage conditions in backfill of the wall. Also, in the case of the design combined with numerical analysis the method 1 can be applied, in that of the traditional design without the analysis the method 2 or the method 3 can be used. Finally, if the numerical analysis is only conduct, the tensile stress in excavation base and in boundary of the wall and the original ground have to be considered in the numerical analysis method.

Application for Self-Supported Retaining Wall Using Deep Cement Mixing (DCM(심층혼합처리공법)에 의한 자립식 흙막이 적용사례)

  • Jeong, Gyeong-Hwan;Kim, Yong-Wan;Shin, Min-Sik;Han, Kyoung-Tae;Kim, Tae-Hyo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.257-267
    • /
    • 2006
  • The earth retaining wall systems for excavation works in a populated urban area or a poor soil deposit can be limited due to various restriction. Thus there are various methods to be applied for them such as the soldier pile method, the diaphragm wall with counterfort and so on. In this study, the self-supported earth retaining wall using the DCM(Deep Cement Mixing) method, including its merits, demerits and some important characteristics occured in the design and the construction stage, was introduced. It might be reference for the other design and construction procedures using the DCM method.

  • PDF

Analysis of Behaviour of Earth Retaining Structure using Cement-mixing Method (교반혼합체로 보강된 흙막이 벽체의 거동 분석)

  • Kim, Young-Seok;Cho, Yong-Sang;Kang, In-Cheol;Kim, In-Sup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1294-1300
    • /
    • 2009
  • Recently, excavations in highly congest urban area have been increased. For the excavations conducted in extremely narrow spaces, we have been developing a novel soil reinforcement system of temporary retaining walls by using deep cement mixing method. The developing method installs largerdiameter ($\Phi$=300~500mm) and shorter reinforcement blocks than previous reinforcement system for mobilizing friction with soils, therefore it has advantages of not only shortening the length of reinforcement system but also reducing the amount of reinforcement. In this study, we performed a numerical analysis of the new reinforcement system by using a commercial finite element program, and evaluated the behavior of the reinforced retaining wall system under various conditions of the length, the diameter, the spacing, and the angle of the reinforcement system.

  • PDF

A Study of the Bottom Ash as Environmentally Grouting Materials (Bottom Ash를 이용한 그라우팅재의 환경적 연구)

  • Doh, Young-Gon;Kwon, Hyuk-Doo;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.5-11
    • /
    • 2006
  • The purpose of this study was to examine the proper mixing ratio of ordinary portland cement and Bottom Ash to recycle the Bottom Ash, which is an industrial waste. After the evaluation, the compressive strength and durability were assessed using the mixture of completely weathered soil (Hwangto), weathered granite soil, and Bentonite. Then environmental friendliness of this mixed material was examined through heavy metal leaching method. It was found out that proper mixing ratio is 6:4, and that the 6% mixture quantity of completely weathered soil (Hwangto), weathered granite soil, and Bentonite is the most effective for compressive strength and durability It was also found out through heavy metal leaching method that the Bottom Ash could be below the standard of the Clean Water Law.

Deposition Properties of Dredged Materials of Kun-Jang Industrial Complex (군산지역 준설토의 퇴적특성)

  • 한영철;송정락
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.61-64
    • /
    • 1992
  • Recently, by the lack of fill material, the dredg and fill(hydraulic fill) method is commonly used in reclamation projects. Hydraulic fill method dredges the soil and send it with water through the transportation pipe to the site. The intial state of the hydraulic fill material is accordingly the mixture of water and soil skeleton which settles with time forming a new soil layer. The properties of new soil layer is governed the size of the soil skeleton, the flow velocity of mixing water, salt concentration, the distance from the discharge pipe outlet, and other dredging conditions when settling process occur. In this study, the effects of gradation of derdged soil on the deposition properties (with emphasis on the optimum spacing of the discharge pipes) was investigated by field test. It was found that the soft fine graind soil was forme at 350m from the discharge pipe outlet when the dredged material was classified as CL, while the soft fine grained soil was not formed even at the distance farther than 400m from the diacharge pipe outlet when the dredged material was classified as SM.

  • PDF