• Title/Summary/Keyword: Soil microbial biomass C

Search Result 70, Processing Time 0.034 seconds

Estimation of carbon storage in reclaimed coal mines: Focused on Betula platyphylla, Pinus koraiensis and Pinus spp. plantations (폐탄광 산림복구지의 수종별 탄소 저장량 추정: 자작나무, 잣나무, 소나무류 식재지를 중심으로)

  • Kim, Gwangeun;Kim, Seongjun;Kim, Hyun-Jun;Chang, Hanna;Kim, Hyungsub;Park, Yong-Ha;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.4
    • /
    • pp.733-743
    • /
    • 2020
  • We estimated the carbon storage of coal mines reclaimed using Betula platyphylla (BP), Pinus koraiensis (PK), and Pinus spp. (PS, Pinus densiflora, Pinus rigida, and Pinus thunbergii). The carbon storage of tree biomass (TB), forest floor(FF), mineral soil (MS), and the total forest were quantified. Reclaimed sites were located in Gangwon-do, Gyeongsangbuk-do, and Jeollanam-do; reclamation was conducted at various times in each region. The carbon storage (ton C ha-1) in FF (BP: 3.31±0.59, PK: 3.60±0.93, PS: 4.65±0.92), MS (BP: 28.62±2.86, PK: 22.26±5.72, PS: 19.95±3.90), and the total forest(BP: 54.81±7.22, PK: 47.29±8.97, PS: 45.50±6.31) were lower than that of natural forests (NF). The carbon storage in TB was lower in BP (22.57±6.18) compared to NF, while those in PK(21.17±8.76) and PS (20.80±6.40) were higher than in NF. While there were no significant differences in the carbon storage of TB, FF, and the total forest among tree species, results from MS showed a significant difference among species. TB and the total forest carbon storages in all sites increased after reclamation. Soil pH and cation exchange capacity values in BP and PS were lower than in NF. Amounts of labile carbon, available phosphate, and microbial biomass carbon in reclaimed sites were less than half of NF. There are a number of methods that could increase the reclamation efficiency. Applications of lime or organic fertilizers, as well as tillage operations, may improve soil properties in reclaimed coal mines. Additionally, pruning and thinning would increase tree growth thereby increasing carbon storage.

Effect of Crop Rotation on the Growth of Sesame(Sesamum indicum L.) and Soil Properties (윤작이 참깨의 생육과 토양의 이화학성에 미치는 영향)

  • Kim, Dong-Hwi;Seo, Jong-Ho;Kim, Chung-Guk;Choi, Seong-Ho;Ko, Mun-Hwan;Heo, Il-Bong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.216-224
    • /
    • 1998
  • The objective of this study was to investigate the effect of sesame monoculture and sesame in rotation (SR) with maize. soybean. barley or rye on reduction of injury by continous cropping in sesame. Field studies were conducted for 3-years (1995~1997) at the experimental field of the Crop Experiment Station. Compared to CS (continuous sesame). SR treatments turned out to keep more organic matter and higher exchangeable cation concentrations in soils. BS (barley and sesame in a 1-year rotation) and RS (rye and sesame in a 1-yea r rotation) treatments had significantly greater available $P_2O_5$ contents in soils than CS, MS (maize and sesame in a 3-year rotation) and SbS (soybean a nd sesame in a 3-year rotation). The pH of the soils under different treatments were not significantly different. SR treatments exhibited significantly lower bulk density and higher pore space than CS. Soil microbial biomass C (SMBC) and N (SMBN) were determined by the chloroform fumigation-extraction method. SMBC and SMBN were significantly higher in soils under BS and RS than those under CS, but only during the 1 year of monitoring. MS and SbS treatments resulted in higher SMBC and SMBN than CS. The occurrence of injury by disease of sesame is the important primary factor of injury by continous cropping, but the disease occurrence with rotation did not decrease in th is experiment. Under CS treatment, the growth and grain of sesame was significantly lower than those under other treatments. Compared to CS, the increments of grain yield of sesame were 68, 63, 57 and 51% for MS, RS, SbS and BS, respectively in the first harvest. In the second harvest, they were 24% for MS, 28% for RS, 20% for SbS and 19% for BS. The average increase ratios during the two years were 41, 41, 34, and 33% for MS, RS, SbS and BS, respectively.

  • PDF

Evaluation of Treatment Efficencies of Pollutants in Juksancheon Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 죽산천 인공습지의 오염물질 정화효율 평가)

  • Choi, Ik-Won;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Seo, Young-Jin;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.642-648
    • /
    • 2012
  • To evaluate the water quality in Juksancheon constructed wetlands for treating non-point source pollution, the removal rates of nutrients in water and the total amounts of T-N and T-P uptakes by water plants were investigated. Chemical characteristics of T-N and T-P in sediment were investigated. The concentrations of BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), SS (Suspended Solids), T-N and T-P in inflow were 0.07~1.47, 0.60~2.65, 0.50~4.60, 1.38~6.26 and $0.08{\sim}0.32mg\;L^{-1}$, respectively. The removal rates of BOD, COD, SS, T-N, and T-P were -10, 51, 66, -3 and 5%, respectively. The maximum amount of T-N uptake by water plants in August was $368.7mg\;plant^{-1}$ in the $2^{nd}$ treatment stage by Nymphoides peltata, $1314.6mg\;plant^{-1}$ in the $3^{rd}$ treatment stage by Iris pseudacorus, $1160.4mg\;plant^{-1}$ in the $4^{th}$ treatment stage by Nymphaea tetragona GEORGI, respectively. The maximum amount of T-P uptake by water plants in August was $121.7mg\;plant^{-1}$ by Nymphoides peltata in the $2^{nd}$ treatment stage, $268.7mg\;plant^{-1}$ by Iris pseudacorus in the $3^{rd}$ treatment stage and $212.0mg\;plant^{-1}$ by Nymphaea tetragona GEORGI in the $4^{th}$ treatment stage, respectively. Organic matter contents in sediments were not different. Contents of T-N and T-P in sediments were higher in spring. Microbial biomass C:N:P ratios in sediments in spring, summer, autumn and winter were 117~140:1~4:1, 86~126:5~6:1, 68~101:2~6:1 and 47~138:2~4:1, respectively. We could conclude that Juksancheon constructed wetlands show high removal efficiencies of COD and SS. However, improvements of management in winter season should be considered to improve the removal efficiencies of pollutants.

Evaluation of Aquatic Ecological Characteristics in Sinpyongcheon Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 신평천 인공습지의 수생태학적 특성 평가)

  • Seo, Dong-Cheol;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kim, Hyun-Ook;Heo, Jong-Soo;Chang, Nam-Ik;Seong, Hwan-Hoo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.400-407
    • /
    • 2011
  • To evaluate the aquatic ecological characteristics in Sinpyongcheon constructed wetlands for treating nonpoint source pollution, the removal rates of nutrients in water, the total amounts of T-N and T-P uptakes by water plants, and chemical characteristics of T-N and T-P in sediment were investigated. The concentrations of BOD, COD, SS, T-N and T-P in inflow were 0.07~1.47, 0.60~2.65, 0.50~4.60, 1.38~6.26 and $0.08{\sim}0.32mg\;L^{-1}$, respectively. The removal rates of BOD, COD, SS, T-N, and T-P were 14%, 6%, 18%, 24%, and 10%, respectively. The maximum amount of T-N uptake by water plants in August was $813mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $1,172mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. The maximum amount of T-P uptake by water plants in August was $247mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $359mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. Organic matter, T-N, and T-P contents in sediments were high in the order of $1^{st}$ bed > $2^{nd}$ bed > $3^{rd}$ bed. Microbial biomass C/N/P ratios in sediments in $1^{st}$, $2^{nd}$, and $3^{rd}$ were 78~110/3~6/1, 73~204/1~6/1, and 106~169/1~6/1, respectively.

Assessment of Soil Properties and Growth of Organically Cultivated Cucumber (Cucumis sativus L.) with Applications of Livestock Manure Compost and Fish Meal Liquid Fertilizer (가축분 퇴비와 어분 액비 시용이 유기농 오이 생육 및 토양환경에 미치는 영향)

  • An, Nan-Hee;Cho, Jung-Rai;Lee, Sang-min;Nam, Hong-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.3
    • /
    • pp.23-31
    • /
    • 2018
  • This study was carried out to investigate the effects of livestock manure compost and fish-meal liquid fertilizer on the growth of cucumber and the soil properties for the stable production of organic cucumber. Cucumber was transplanted in greenhouse on the $6^{th}$ of April in 2017, and this experiment contained five treatments: livestock manure compost 100% (LC 100%), livestock manure compost 50% + fish-meal liquid fertilizer 50% (LC50 + LF50), livestock manure compost 50% (LC50), chemical fertilizer (NPK), and no fertilizer (NF). As a result, it was shown that soil chemical properties of LC50 + LF50 plot is not different from that of LC100 plot except for the EC content, but soil chemical properties of LC50 + LF50 plot is statistically significantly different from that of NPK plot except for pH. As a result of evaluating the functional diversity of soil microbial communities using Biolog system, the substrate richness (S) and the diversity index (H) were the highest in LC50 + LF50 plot. As a result of comparing the cucumber growth and yield, it was found that there was no statistically significant difference between the plant height and the fresh weight of LC100, LC50 + LF50, and NPK plot, but the plant height and the fresh weight of LC100, LC50 + LF50, and NPK plot were different from that of LC50 and NF plot. The yield of cucumber was the highest in NPK plot r(7,397 kg/10a), but there was no statistically significant difference in the yield of cucumber between NPK plot and LC100, LC50 + LF50 plot. The above-described results suggested that the livestock manure compost and fish meal liquid fertilizer can be used for organic cucumber production under greenhouse condition.

Effect of Liquid Fertilizer Application using Fish-meal, Bone-meal and Sesame oil-cake on Seed Germination and Growth of Tomato (어분, 골분 및 참깨박을 이용한 발효액비 제조에 따른 무 발아 및 토마토 생육에 미치는 영향)

  • An, Nan-Hee;Lee, Sang-min;Cho, Jung-Rai;Lee, Cho-Rong;Kong, Min-jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.61-70
    • /
    • 2019
  • This study aimed to investigate the physicochemical characteristics of fish meal, bone meal, and sesame oil cake, which are readily available by-products from agriculture and fisheries, during the process of liquid fertilizer fermentation, and to examine the effects of liquid fertilizer application on seed germination and growth of tomatoes. During processing the fermentation for liquid fertilizers by using fish meal, bone meal, and sesame oil cake liquid fertilizers, the pH of the fertilizer increased in the order of bone meal > fish meal > sesame oil cake, and the concentration increased rapidly up to 30 days in all types of liquid fertilizer. The nitrogen content of the liquid fertilizers increased as fermentation progressed in the order of fish meal > bone meal > sesame oil cake. The phosphorus content increased as fermentation progressed and the highest was 1.0 % in the liquid fertilizer of sesame oil cake. The germination rate and its index of radish seeds were compared for different dilutions of each of the liquid fertilizers. Excluding the 10-fold dilution of the fish meal and oil cake liquid fertilizer, all the treatment groups showed a germination rate ≥ 95 % and the germination index tended to increase with dilution rate of liquid fertilizers. For responses of tomato growth, there were no significant differences among the liquid fertilizer treatment groups; however, the organic content, microbial density, and microbial biomass C in the soil were higher than chemical fertilizer treatment. These results demonstrated that there were differences in the characteristics of liquid fertilizers depending on the materials used, and that liquid fertilizer can be used for nutrition management for the organic crop cultivation.

Effect of Soil Incorporation of Graminaceous and Leguminous Manures on Tomato (Lycoperiscon esculentum Mill.) Growth and Soil Nutrient Balances (화본과 및 두과 녹비작물 토양환원에 따른 토마토 생육 및 토양 양분수지량 변화)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.343-348
    • /
    • 2008
  • To investigate the effects of incorporation of green manures (GM) into a sandy loam soil on growth, yield, and nutrient uptake of tomato (Lycoperiscon esculentum Mill.) and nutrient balances (input minus offtake of nutrients), five tomato production systems were compared under the condition of plastic film house: 1) a no input system (no additional amendment or inputs, 0-To-0-To); 2) a conventional system (application of N-P-K chemical fertilizers, Cf-To-Cf-To); 3) a leguminous GM-containing system (hairy vetch-tomato-soybean-tomato, Hv-To-Sb-To); 4) a graminaceous GM-containing system (rye-tomato-sudan grass-tomato, Ry-To-Sd-To); and 5) system mixed with leguminous and graminaceous GMs (rye-tomatosoybean- tomato, Ry-To-Sb-To). Here, hairy vetch and rye were cultivated as winter cover crops during late $Dec{\sim}late$ Feb and soybean and sudan grass were cultivated as summer cover crops during late $Jun{\sim}mid$ Aug. All of them cut before tomato planting and then incorporated into soil. Biomass of GMs was greater in summer season than that of winter season. Nitrogen amount fixed by a leguminous plants was about $126\;kg\;ha^{-1}$ per a cropping season, corresponding to 60% N level needed for tomato production, which was comparable to 50 and $96\;kg\;ha^{-1}$ fixed by rye and sudan grass. As a result, tomato yield of Hv-To-Sb-To system (legume GM treatment) was similar to Cf-To-Cf-To (conventional), but that in Ry-To-Sd-To system (graminaceous GM treatment) was not attained to a half level of conventional treatment. Nutrient budgets for N, P and K on the conventional farm were balanced or somewhat positive exception for minus-balanced K. Ry-To-Sd-To system showed a positive N, P and K budgets due to the depressed growth of tomato which is caused by high C/N ratio and low N-fixing capacity of the GMs. Inversely, those of Hv-To-Sb-To system were negative in all of N, P and K budgets because of increased growth and yield of tomato with high nitrogen-supplying capacity as well as low C/N ratio of leguminous GM. In conclusion, although conventional cultivation has an advantage in relation to N, P and K nutrient budgets rather than GM-incorporated systems, a leguminous GMs could be recommended as nitrogen reservoir and soil amendment because the yield of tomato between use of leguminous GM and conventional cultivation was not only significantly difference, but also GMs commonly reduce nutrient loss and improve microbial communities.

Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion

  • Lee, Ko-Eun;Radhakrishnan, Ramalingam;Kang, Sang-Mo;You, Young-Hyun;Joo, Gil-Jae;Lee, In-Jung;Ko, Jae-Hwan;Kim, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1467-1475
    • /
    • 2015
  • The use of microbial extracts containing plant hormones is a promising technique to improve crop growth. Little is known about the effect of bacterial cell-free extracts on plant growth promotion. This study, based on phytohormonal analyses, aimed at exploring the potential mechanisms by which Enterococcus faecium LKE12 enhances plant growth in oriental melon. A bacterial strain, LKE12, was isolated from soil, and further identified as E. faecium by 16S rDNA sequencing and phylogenetic analysis. The plant growth-promoting ability of an LKE12 bacterial culture was tested in a gibberellin (GA)-deficient rice dwarf mutant (waito-C) and a normal GA biosynthesis rice cultivar (Hwayongbyeo). E. faecium LKE12 significantly improved the length and biomass of rice shoots in both normal and dwarf cultivars through the secretion of an array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, and GA53), as well as indole-3-acetic acid (IAA). To the best of our knowledge, this is the first study indicating that E. faecium can produce GAs. Increases in shoot and root lengths, plant fresh weight, and chlorophyll content promoted by E. faecium LKE12 and its cell-free extract inoculated in oriental melon plants revealed a favorable interaction of E. faecium LKE12 with plants. Higher plant growth rates and nutrient contents of magnesium, calcium, sodium, iron, manganese, silicon, zinc, and nitrogen were found in cell-free extract-treated plants than in control plants. The results of the current study suggest that E. faecium LKE12 promotes plant growth by producing GAs and IAA; interestingly, the exogenous application of its cell-free culture extract can be a potential strategy to accelerate plant growth.

Impacts of Elevated $CO_2$ on Algal Growth, $CH_4$ Oxidation and $N_2O$ Production in Northern Peatland (이탄습지에서 이산화탄소의 농도가 조류의 증식, 메탄 산화 및 아산화질소 생성에 미치는 영향)

  • Freeman, Chris;Kang, Ho-Jeong
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.261-266
    • /
    • 2001
  • Effects of elevated carbon dioxide ($CO_2$) on soil microbial processes were studied in a northern peatland. Intact peat cores with surface vegetation were collected from a northern Welsh fen, and incubated either under elevated carbon dioxide (700 ppm) or ambient carbon dioxide (350 ppm) conditions for 4 months. Higher algal biomass was found under the elevated $CO_2$ condition, suggesting $CO_2$ fertilization effect on primary production, At the end of the incubation, trace gas production and consumption were analyzed using chemical inhibitors. For methane ($CH_4$ ), methyl fluoride ($CH_3F$) was applied to determine methane oxidation rates, while acetylene ($C_2H_2$) blocking method were applied to determine nitrification and denitrification rates. First, we have adopted those methods to optimize the reaction conditions for the wetland samples. Secondly, the methods were applied to the samples incubated under two levels of $CO_2$. The results exhibited that elevated carbon dioxide increased both methane production (210 vs. $100\;ng\;CH_4 g^{-1}\;hr^{-1}$) and oxidation (128 vs. $15\;ng\;CH_4 g^{-1}\;hr^{-1}$), resulting in no net increase in methane flux. For nitrous oxide ($N_2O$) , elevated carbon dioxide enhanced nitrous oxide emission probably from activation of nitrification process rather than denitrification rates. All of these changes seemed to be substantially influenced by higher oxygen diffusion from enhanced algal productivity under elevated $CO_2$.

  • PDF

Evaluation of No-tillage Rice Cover Crop Cropping Systems for Organic Farming (벼 유기농업을 위한 무경운 피복작물 작부체계 평가)

  • Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.200-208
    • /
    • 2010
  • The objectives of this study were to evaluate no-tillage cover crop cropping systems for organic farming in paddy. The experiment was performed at Ihyeon series (silt loam: 9.1% sand, 73.0% silt and 17.9% clay) which affected by different management practices. Planthopper population per 20 plant was significantly higher 65.3 for conventional tillage with chemical compounds (control) compared with 3.4~9.6 for no-tillage treatments (without rice straw or green manure, amended with rice straw, hairy vetch, rape, rye, and Chinese milk vetch). Also, disease severity of sheath blight was significantly higher 10.5% for control compared to 0.7~2.9% for no-tillage treatments. Four weed species, namely Monochoria vaginalis, Ludwigia prostrata, Rotala indica, and Aneilema keisak occurred in no-tillage paddy, whereas Monochoria vaginalis occurred in control only. The pH, available phosphate, and microbial biomass C in paddy were steeply decreased in response to submerging, but increased at first heading stage. Soil $NH_4$-N content at first heading stage was significantly higher in no-tillage treatments compared with control. The grain yield was significantly higher in 4.30 Mg $ha^{-1}$ for control than other treatments. Meanwhile, rice productivity was significantly higher in 2.69 Mg $ha^{-1}$ for no-tillage amended with Chinese milk vetch compared to other no-tillage treatments. The number of panicle per plant, grain number perpanicle, and percent ripened grain were highly related for increasing the yield of rice. These results show that Chinese milk vetch was optimum cover crop for organic farming in no-tillage paddy.