• Title/Summary/Keyword: Soil load

Search Result 1,408, Processing Time 0.028 seconds

The Study of Load Test Method for In-Site Casting Pile In High Rise Building. (초고층에서의 현장타설말뚝 재하시험방법 고찰)

  • Kim, Dae-Hak;Hong, Young-Kil;Han, Sung-Moo;Gu, Ung-Hwoe;Park, Chan-Duck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.385-392
    • /
    • 2008
  • Modern city have had a lot of high-rise building in high standards and multi-level performance. Using of city space reach better stages by using integration. These skyscraper have increased working load on ground. that building is efficiently designed for that soil capacity is well applied. With material side, big size pile, high strength concrete and high strength steel is used for that getting enough lobby space and resisting load increased of high-rise building. limit load test and load transmitted test can make soil capacity optimized. By the way, method of measuring pile capacity is more advanced and bigger. pile type applied by high rise building have underground excavation space, also reflect regional soil property and have some fact reviewed. A lot of high rise building recently is built as land mark in Seoul, Busan and Incheon. about method of measuring capacity of foundation pile, example of construction field is compared and reviewed.

  • PDF

Field behaviour geotextile reinforced sand column

  • Tandel, Yogendra K.;Solanki, Chandresh H.;Desai, Atul K.
    • Geomechanics and Engineering
    • /
    • v.6 no.2
    • /
    • pp.195-211
    • /
    • 2014
  • Stone columns (or granular column) have been used to increase the load carrying capacity and accelerating consolidation of soft soil. Recently, the geosynthetic reinforced stone column technique has been developed to improve the load carrying capacity of the stone column. In addition, reinforcement prevents the lateral squeezing of stone in to surrounding soft soil, helps in easy formation of stone column, preserve frictional properties of aggregate and drainage function of the stone column. This paper investigates the improvement of load carrying capacity of isolated ordinary and geotextile reinforced sand column through field load tests. Tests were performed with different reinforcement stiffness, diameter of sand column and reinforcement length. The results of field load test indicated an improved load carrying capacity of geotextile reinforced sand column over ordinary sand column. The increase in load carrying capacity depends upon the sand column diameter, stiffness of reinforcement and reinforcement length. Also, the partial reinforcement length about two to four time's sand column diameter from the top of the column was found to significant effect on the performance of sand column.

Load Transfer Mechanism of Hybrid Model of Soil-nailing and Compression Anchor (쏘일네일링과 앵커가 결합된 하이브리드 공법의 하중전이 메커니즘)

  • Seo, Hyung-Joon;Kim, Hyun-Rae;Han, Shin-In;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.1
    • /
    • pp.55-66
    • /
    • 2012
  • The load transfer mechanism of hybrid model of soil-nailing and compression anchor is studied in this paper. The hybrid model is composed of an anchor bar (installed at the tip) with two PC strands and a steel bar. It can make active behavior of skin friction by applying the pre-stress. In this paper, the load transfer mechanisms of soil-nailings, compression anchors, and hybrid models, respectively, are obtained from skin friction theory and load transfer theory. Field pullout tests are performed to identify the load transfer mechanism and experimental results are compared with analytical solution. In case of soil-nailings, the tension load is transferred from face to tip, however, in case of compression anchors, the compression load is transferred from tip to face. The experimental behavior of the hybrid model is similar to that of compression anchor when only pre-stress is applied. If the pullout test is performed by simultaneously pulling out the anchor and the nail, the compression load is dominant at the tip and tension load is dominant at the face. The load transfer mechanism of the hybrid model shows the combined behavior of soil-nailings with compression anchors.

The Behavior of Bearing Capacity of Steel Pipe Piles Reinforced by Super Injection Grouting at Pile Tip (S.I.G 공법으로 선단보강된 강관말뚝의 지지거동)

  • Park, Young-Ho;Kim, Nag-Young;Yook, Jeong-Hoon;Choi, Jin-O
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.20-27
    • /
    • 2004
  • Reinforced twice than width of foundation with SIC under steel piles drived in cohesion soil and in the coal-limestone which heavily fractured. To analyze behaviour characteristic of steel piles, load transfer test was performed to steel piles attached with strain gauges to axial direction. After it passed 49days, dynamic load test was performed to set-up effect of steel piles bearing capacity. The results of test were compared to each other. According to the results, as the skin friction of steel pile was on the same condition, end bearing capacity of steel piles established on SIC solid of cemented milk in cohesion soil was three times than steel piles established on SIG solid of cemented milk in heavily fractured coal- limestone. After piles were driven and passes 49days, in case of piles on SIG solid of comented milk in cohesion soil the increaes of allowable bearing capacity was 442.9% and allowable bearing capacity of piles on SIG solid of cemented milk in heavily fractured coal-limestone increased 22.4%.

  • PDF

Effects of Lift Resistance on Dynamic Load Acting on a Circular Wheel

  • Kishimoto, Tadashi;Taniguchi, Tetsuji;Sakai, Jun;Choe, Jung-Seob;Ohtomo, Koh-Ichi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1166-1175
    • /
    • 1993
  • The objective of this study is to measure contra-retractive adhesion and lift resistance acting on the rim section of a circular wheel for analyses of their effects on the dynamic load. A circular iron wheel was used for experiments. A part of the wheel rim was cut off, and transducers which can measure normal and tangential forces were installed in this section. Experiments were conducted on a laboratory soil bin which was filled with clayey soil under wet and dry conditions. The mechanism of generating contra -retractive adhesion on a circular wheel were analyzed by the experiments and motion analyses of the wheel. Effects of lift resistance on dynamic load were analyzed by measured forces under wet soil conditions in comparison in comparison with those under dry conditions. The showed that a part of the lift resistance were transferred to the dynamic load. These results may become basic data and ideas for analyses of tractor dynamic under wet soil conditions.

  • PDF

Safety Evaluation of the Combined Load for Offshore Wind Turbine Suction Foundation Installed on Sandy Soil (사질토 지반에 위치한 해상풍력발전기 석션기초의 복합하중에 대한 안전성 평가)

  • Park, Jeong Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.195-202
    • /
    • 2021
  • Offshore wind turbine (OWT) receive a combined vertical-horizontal- moment load by wind, waves, and the structure's own weight. In this study, the bearing capacity for the combined load of the suction foundation of OWT installed on the sandy soil was calculated by finite element analysis. In addition, the stress state of the soil around the suction foundation was analyzed in detail under the condition that a combined load was applied. Based on the results of the analyses, new equations are proposed to calculate the horizontal and moment bearing capacities as well as to define the capacity envelopes under general combined loads.

Analysis of Laterally Loaded Piles Using Soil Resistance of Wedge Failure Mode (Wedge Failure Mode 형태의 반력을 이용한 수평재하 말뚝의 거동 분석)

  • Kim, Young-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.59-72
    • /
    • 2009
  • The load distribution and deflection of offshore piles are investigated by lateral load-transfer curve method (p-y curve). Special attention is given to the soil-pile interaction and soil resistance of 3D wedge failure mode. A framework for determining a hyperbolic p-y curve is proposed based on theoretical analysis and experimental load test results. The methods for determining appropriate material parameters needed for constructing the proposed p-y curves are presented in this paper. Through comparisons with field case studies, it was found that the proposed method in the present study estimates reasonably the load transfer behavior of pile, and thus, the computed pile responses, such as bending moment and lateral displacement, agree well with the actual measured responses.

Behaviors of Soil-cement Piles in Soft Ground (연약지반에 설치된 소일시멘트말뚝의 거동)

  • Kim, Young-Uk;Kim, Byoung-Il;Xiaohong Bai
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.45-51
    • /
    • 2003
  • This study was undertaken to investigate behavior characteristics of soil-cement piles in composite foundations through computer analysis. The soil-cement piles with cushion subjected to the vertical central loading only were analyzed using the program - “ABAQUS”. The investigation was conducted for various conditions including soil property, pile dimension, replacement ratio, pile/soil modular ratio, and load intensity. The results of analysis provided not only the load transfer and settlement behaviors but also the effective pile length and load distribution between a pile and soil. It was concluded that in the design of composite foundations, the modular ratio and replacement ratio are two design parameters.

A Study on the Design Load of Artificial Soil Ground (인공지반의 설계하중 산정에 관한 연구)

  • Youn, Seong-Cheol;Kim, Tae-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.36-46
    • /
    • 2009
  • The objective of this study is to analyze the effect of artificial soil ground on a structure. When the artificial soil ground is planted, the technical factors to be considered will be the load for buildings and the growth of plants. There are no current studies of the effect of artificial soil ground on a structure and this study will analyze the load effects of artificial soil ground, which mixes both pearlite and natural soil on structures. The load affecting the structures due to artificial soil ground will be maximized when the artificial soil ground becomes saturated, and which would occur when the rainfall intensity exceeds the infiltration capacity of the artificial soil ground. In order to determine whether the artificial soil ground has reached saturation or not, a 10 years frequency and 10 minutes rainfall intensity which is used for in urban drain design, is utilized. The hydraulic conductivity of artificial soil and mixed soil has been changed depending on the proportion of the mix, It has a range of fluctuation in the degree of hardening, in particular, but does not exceed the 10 minutes rainfall intensity over 10 years frequency in the most cases. Therefore, it would be efficient to apply the saturated unit weight of artificial soil ground as the design load of a structure.

A Study on the Transmission Tower Foundation Design and Construction Method - A Focus of Cylindrical Foundation - (가공 송전 철탑기초 설계 및 시공 방법 연구 - 심형기초를 중심으로 -)

  • Jang, Suk-Han;Kim, Hee-Kwang;Lee, Kang-Hyeon;Han, Kyung-Soo;Ham, Bang-Wook;Chung, Ki-Sun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1031-1034
    • /
    • 2007
  • Electric transmission lines pass through a variety of area. Foundation supporting the conductors and tower are selected properly in accordance with external load, for example dead load, wind load, snow load, construction load etc, and topography and geology condition. Typical types of foundation are as follows: pad foundation for small load and hard soil or rock in mountainous area, pile foundation for medium or large load and soft soil in plain field area. This paper introduced cylindrical foundation design & construction for large load and mountainous area. This foundation failure mode against pulling-out show splitting failure by tensile force toward circumferential direction.