• Title/Summary/Keyword: Soil fill

Search Result 247, Processing Time 0.029 seconds

지반공학 실험을 통한 하수준설토의 재활용방안 연구

  • Jang Yeon-Su;Jeong Jae-Uk;Ryu Hye-Rim
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.230-233
    • /
    • 2006
  • 국내에서는 매년 60만 톤의 하수슬러지가 준설된다. 현행법상 하수 준설토는 산업폐기물로 정의되며, 재활용되도록 강조되어진다. 그럼에도 불구하고 매입에 의한 처리로 낭비되고 있는 실정이다. 본 연구에서는 하수 준설토의 재활용 방안을 모색하기 위하여 지반 공학적 실험을 실시하였다. 실험 결과 준설된 순수한 하수 준설토의 경우 국내 건설용 성토재료 요구기준에 충분히 안정적인 것으로 나타났다.

  • PDF

A Study of MD Constitutive Model Calibration for Coarse-grained Soils (조립재료에 대한 MD 구성모델 캘리브레이션 연구)

  • Choi, Changho;Shin, Dong-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.63-72
    • /
    • 2013
  • The structural stability of fill dam largely depends on the engineering behavior of rock materials used as main zone for dam construction and it is necessary to understand well the stress-strain characteristics of fill materials as well as shear strength property. In addition, the numerical analysis of fill dam requires a thorough study for calibrating material properties and parameters of a coarse-grained soil constitutive model. In this paper, large triaxial test results for Buhang-dam fill materials are analyzed and constitutive model parameters are calibrated based on the test results. It is shown that MD constitutive model is capable to predict the stress-strain behavior of dense and loose coarse-grained soils used for Buhang-dam construction based on the comparison study between the experimental test result and numerical simulation.

Long-term Compression Settlement of Granular (Rock/Soil Mixture) Fill Materials under Concrete Track (콘크리트궤도 하부 조립지반재료의 장기압축침하에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Lee, Jin-Wook;Lee, Jun-S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.95-106
    • /
    • 2009
  • This study was intended to identify the effect of the wetting on a long-term compression settlement of the rock/soil mixture used as fill material, depending on compaction and grading conditions. The relatively large settlement happened under the fully-submerged condition, and a repeated settlement was monitored when moisture content increased over and over again like the rainfall infiltration. In case of the materials without fine fractions or compacted in wet condition, the settlement caused by wetting was relatively low. In conclusion, the long-term compression settlement of granular (rock/soil mixture) fill material is more affected by the increase of water content and temperature change (freezing and thawing) than creep.

Evaluation of strength properties of cement stabilized sand mixed with EPS beads and fly ash

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghorbani, Ali;Alamoti, Mohsen Nasiri
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.533-544
    • /
    • 2018
  • The importance of using materials cost effectively to enhance the strength and reduce the cost, and weight of earth fill materials in geotechnical engineering led researchers to seek for modifying the soil properties by adding proper additives. Lightweight fill materials made of soil, binder, water, and Expanded polystyrene (EPS) beads are increasingly being used in geotechnical practices. This paper primarily investigates the behavior of sandy soil, modified by EPS particles. Besides, the mechanical properties of blending sand, EPS and the binder material such as fly ash and cement were examined in different mixing ratios using a number of various laboratory studies including the Modified Standard Proctor (MSP) test, the Unconfined Compressive Strength (UCS) test, the California Bearing Ratio (CBR) test and the Direct Shear test (DST). According to the results, an increase of 0.1% of EPS results in a reduction of the density of the mixture for 10%, as well as making the mixture more ductile rather than brittle. Moreover, the compressive strength, CBR value and shear strength parameters of the mixture decreases by an increase of the EPS beads, a trend on the contrary to the increase of cement and fly ash content.

Field instrumentation and settlement prediction of ground treated with straight-line vacuum preloading

  • Lei, Huayang;Feng, Shuangxi;Wang, Lei;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.447-462
    • /
    • 2019
  • The vacuum preloading method has been used in many countries for ground improvement and land reclamation works. A sand cushion is required as a horizontal drainage channel for conventional vacuum preloading. In terms of the dredged-fill foundation soil, the treatment effect of the conventional vacuum preloading method is poor, particularly in Tianjin, China, where a shortage of sand exists. To solve this problem, straight-line vacuum preloading without sand is widely adopted in engineering practice to improve the foundation soil. Based on the engineering properties of dredged fill in Lingang City, Tianjin, this paper presents field instrumentation in five sections and analyzes the effect of a prefabricated vertical drain (PVD) layout and a vacuum pumping method on the soft soil ground treatment. Through the arrangement of pore water pressure gauges, settlement marks and vane shear tests, the settlement, pore water pressure and subsoil bearing capacity are analyzed to evaluate the effect of the ground treatment. This study demonstrates that straight-line vacuum preloading without sand can be suitable for areas with a high water content. Furthermore, the consolidation settlement and consolidation degree system is developed based on the grey model to predict the consolidation settlement and consolidation degree under vacuum preloading; the validity of the system is also verified.

Consolidation Analysis of Dredged Fill Ground Installed with Horizontal Drains (I) - Program Development and Verification - (수평배수재가 포설된 준설매립지반의 압밀해석(I) - 프로그램 개발 및 검증 -)

  • Park Chung-Yong;Jang Yeon-Soo;Park Chung-Soon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.27-39
    • /
    • 2005
  • A finite difference program with 3-D governing equation expanded from 1-D self-weight consolidation is developed to analyze the consolidation behavior of surface dredged soil with horizontal drains. Various boundary conditions with horizontal drains and seepage pressure of pore water infiltrated to the drains are considered in the program. A laboratory soil chamber experiment for the consolidation of dredged soil is performed to validate the program and the measured settlement-time result is compared with the one predicted by the program. The influence of design conditions of horizontal drains such as horizontal installation spacing, installation depth and number of drain layers, on the consolidation is analyzed.

Growth Environments and Management Strategies for Pinus densiflora Village Groves in Western Gangwon Province (강원도 영서지역 소나무 마을숲의 생장환경과 관리방안)

  • Jo, Hyun-Kil;Seo, Ok-Ha;Choi, In-Hwa;Ahn, Tae-Won
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.6
    • /
    • pp.893-902
    • /
    • 2011
  • The purpose of this study was to survey structures and growth conditions of Pinus densiflora village groves, and to establish management strategies for their desirable growth and conservation. Twelve village groves were selected in western Gangwon province for the study. The age of the study groves ranged from 50 to 200 years. Average dbh (diameter at breast height) and density of trees for each study grove were 27~52cm and 0.5~9.3 trees/$100m^2$, respectively. Soil environments were favorable to Pinus densiflora growth in the majority of the study groves, but 2 study groves with sandy soils showed considerably poor nutrient contents. Low tree vitality was found in some of the study groves due to poor conditions of root growth from soil fill and trampling. There were detachment of cambial tissue and damage of stem cavity at 6 study groves, which were caused by artificial injury, careless pruning, and frost damage. Light disease damage by Rhizosphaera kalkhoffii and phomopsis blight were found at 6 study groves. Light pest damage by Thecodiplosis japonensis was also found at 6 study groves, but the pest damage at 2 study groves was relatively considerable. Thus, major factors limiting normal growth of Pinus densiflora village groves were infertility, soil fill and trampling, stem damage, and disease and pest. Desirable management strategies were explored to solve growth-related problems and to conserve the study groves. The management strategies included fertilization of organic matter and lime, removal of soil fill, soil plowing and graveling, wood-trail installation or woodchip mulching, supply of wood fences and protective frames, surgical operation for damaged stems, vitality enhancement, and trunk injection to improve growth environments or control stem damage and disease/pest.

Theoretical Analysis of Embankment Loads Acting on Piles (성토지지말뚝에 작용하는 연직하중의 이론해석)

  • 홍원표;이재호;전성권
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.131-143
    • /
    • 2000
  • Several theoretical analyses are performed to predict the vertical load on embankment piles with cap beams. The piles are installed in a row in soft ground below the embankment and the cap beams are placed perpendicular to the longitudinal axis of the embankment. Two failure mechanisms such as the soil arching failure and the punching shear failure are investigated according to the failure pattern in embankment on soft ground supported by piles with cap beams. The soil arching can be developed when the space between cap beams is narrow and/or the embankment is high enough. In the investigation of the soil arching failure, the stability in the crown of the arch is compared with that above the cap beams. The factors affecting the load transfer in the embankment fill by soil arching are the space between cap beams, the width of cap beams and the soil parameters of the embankment fill. The portion of the embankment load carried by cap beams decreases with increment of the space between cap beams, while it increases with the embankment height, the width of cap beams, the internal friction angle and cohesion of the embankment fill. Thus, the factors affecting load transfer in embankment should be appropriately decided in order to maximize the effect of embankment load transfer by piles.

  • PDF

Model Tests for Vertical Loads Acting on Embankment Piles (성토지지말뚝에 작용하는 연직하중에 대한 모형실험)

  • 홍원표;강승인
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.171-181
    • /
    • 2000
  • A series of model tests were performed both to investigate the load transfer by soil acrching in fills above embankment pils and to verify of the theoretical analysis. In the model tests, the piles were installed in a row below the embankment and the cap beams were placed on the pile heads perpendicular to the longitudinal axias of the embankment. The space between pile cap beams and the embankment height was focused as the major factors affecting the load transfer in embankment fill. When the embankment fill was higher than the minimum required height, which was about 33% higher than the radius of the soil arch proposed by theoretical discussion in the previous study, not only the soil arching could be developed completely but also the experimental results showed good agreement with theoretical predictions. The portion of the embankment load carried by model pile cap beams decreased with increment of the space between pile cap beams, while it increased with increment of the embankment height. Therefore, to maximize the effect of embankment load transfer by piles on design, the interval ratio of pile cap beams should be decreased under considerably high embankments by reducing the space between cap beams and/or enlarging the width of pile cap beams.

  • PDF

A Case Study of Soil-Cement Fill for Tunneling (소일시멘트 복토후 터널굴착에 대한 사례 연구)

  • Shin Il-Jae;Kang Jun-Ho;Suh Young-Ho
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.359-368
    • /
    • 2005
  • In case the overburden of a tunnel is too low to adopt NATM, cut and cover method generally can be chosen as alternative. However, in tunneling some area with very low or no overburden between two mountains, the cut and cover method requires additional construction of a couple of tunnel portals and the maintenance of portal slopes until backfilling is completed. As a solution for this problem, increasing the tunnel overburden by raising the ground level can be effective. This paper presents the case study for tunneling at C240 site in Taiwan High Speed Railway(THSR) in which soil-cement filling method was used for pre-banking before tunnel excavation. Cement content of filling material was $2\~4\%$ and thickness of filling a round was $130\~250\;mm$. The stability evaluation for the soil-cement slope and concrete lining of low cover tunnel was conducted by numerical analysis.