• Title/Summary/Keyword: Soil carbon

Search Result 1,487, Processing Time 0.028 seconds

Characterization of Crop Residue-Derived Biochars Produced by Field Scale Biomass Pyrolyzer

  • Jung, Won-K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Application of biochar to soils is proposed as a significant, long-term, sink for atmospheric carbon dioxide in terrestrial ecosystems. In addition to reducing emissions and increasing the sequestration of carbon, production of biochar and its application to soils will contribute improve soil quality and crop productivity. Objectives were i) to evaluate biochar productivity from crop residues using a low-cost field scale mobile pyrolyzer and ii) to evaluate characteristics of feedstocks and biochars from locally collected crop residues. Pyrolysis experiments were performed in a reactor operated at $400-500^{\circ}C$ for 3-4 hours using biomass samples of post-harvest residues of corn (Zea mays L.), cotton (Gossypium spp.), rice (Oryza sativa L.), sorghum (Sorghum bicolor L.) and wheat (Triticum aestivum L.). Feedstocks differed, but average conversion to biochar was 23%. Carbon content of biomass feedstock and biochar samples were 445 g $kg^{-1}$ and 597 g $kg^{-1}$, respectively. Total carbon content of biochar samples was 34% higher than its feedstock samples. Significant increases were found in P, K, Ca, Mg, and micro-nutrients contents between feedstock and biochar samples. Biochar from corn stems and rice hulls can sequester by 60% and 49% of the initial carbon input into biochar respectively when biochar is incorporated into the soils. Pyrolysis conversion of corn and rice residues sequestered significant amounts of carbon as biochar which has further environmental and production benefits when applied to soils. Field experiment with crop residue biochar will be investigated the stability of biochars to show long-term carbon sequestration and environmental influences to the cropping systems.

The Relevance of Soil N2O Emissions Measured by a Closed Chamber Technique on the Physico-chemical Soil Parameters (Closed chamber를 이용한 토양 N2O 배출량과 주요 토양 인자들과의 상관성)

  • Kim Deug-Soo;Oh Jin Man
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.749-758
    • /
    • 2004
  • Nitrous oxide ($N_2$O) has been known as an important trace gas due to the greenhouse gas and the major source of stratospheric oxide of nitrogen (NO). Soil is the major source of $N_2$O in nature. The physicochemical characteristics of soils affect the emission of $N_2$O from soil. These physicochemical parameters are soil moisture, soil temperature, and soil N content. Since these parameters are correlated to the flux of $N_2$O from soil individually and compositely, there still remain many unknowns in the mechanism to produce $N_2$O in soil and the roles of such physicochemical parameters which affect the soil $N_2$O emission. Soil $N_2$O fluxes were measured at different levels in water filled pore space (WFPS), soil temperature and soil N contents from the same amounts of soils which were sampled from agriculturally managed upland field in a depth of ~30 cm at Kunsan. The soil $N_2$O flux measurements were conducted in a laboratory with a closed flux chamber system. The optimum soil moisture and soil temperature were observed at 60% of WFPS and ~13$^{\circ}C$. The soil $N_2$O flux increased as soil N contents increases during the whole experimental hours (up to 48 hours). However, average $N_2$O flux decreased after ~30 hours when organic carbon was mixed with nitrogen in the sample soils. It is suggested that organic carbon could be important for the emission of $N_2$O, and that the ratio of N to C needs to be identified in the process of $N_2$O soil emission.

Effect of Soil Respiration on Light Fraction-C and N Availability in Soil Applied with Organic Matter

  • Ko, Byong-Gu;Lee, Chang-Hoon;Kim, Myung-Sook;Kim, Gun-Yeob;Park, Seong-Jin;Yun, Sun-Gang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.510-516
    • /
    • 2016
  • Soil respiration has been recognized as a key factor of the change of organic matter and fertility due to the carbon and nitrogen mineralization. In this study, we evaluated the effect of soil respiration on the light fraction-C and inorganic N content depending on temperature in soil applied with organic matter. Soil respiration was calculated by using total $CO_2$ flux released from soil applied with $2Mg\;ha^{-1}$ of rice straw compost and rye for 8 weeks incubation at 15, 25, $35^{\circ}C$ under incubation test. After incubation test, light fraction and inorganic N content were investigated. Rye application dramatically increased soil respiration with increasing temperature. $Q_{10}$ value of rye application was 1.69, which was higher 27% than that of rice straw compost application. Light-C and $NO_3-N$ contents were negatively correlated to soil respiration. Light-C in rye application more decreased than that in rice straw compost with temperature levels. These results indicate that temperature sensitivity of soil respiration could affect soil organic mater content and N availability in soil due to carbon availability. Also, light fraction would be useful indicator to evaluate decomposition rate of organic matter in soil under a short-term test.

Application of activated carbon bugs to the dye tracer study in a Karst area

  • Hwang Hyeon-Tae;Lee Myeong-Jae;Choi Ye-Gwon;Mok Jong-Gu;Lee Jin-Yong;Kim Yong-Cheol;Yeom Byeong-U
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.407-410
    • /
    • 2006
  • Studies were performed on evaluating the applicability of activated carbon bugs on dye tracer tests as tracer detectors by using its adsorption isotherm of the grained activated carbon. We preliminary conducted several standard adsorption and extraction tests and obtained the relationship between standard dye solution and detected concentrations from activated carbon samples in dry and wet conditions. the slopes of the regression line were 0.71 for wet condition and 0.74 for dried one. Field dye tracer tests were performed in a karst area, where several faults occur along a stream and pass the test area. We sampled water samples and activated carbon samples at three points in Hwangji Pond, where groundwater outflows from the karst conduit. According to the results of breakthrough curve analysis, the regional flow along the conduit, which is assumed to cause a karst conduit, was estimated as 0.18 m/day. The relationship between the concentrations of water sample and extracted activated carbon bugs shows the similar slopes with those from standard solution tests. This suggests that activated carbon could be useful as a dye tracer detector because the extraced concentration can be quantified.

  • PDF

Effects of NaOH Treatment on the Adsorption Ability of Surface Oxidized Activated Carbon for Heavy Metals

  • Min-Ho Park;So-Jeong Kim;Jung Hwan Kim;Jae-Woo Park
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.6
    • /
    • pp.16-23
    • /
    • 2023
  • Heavy metal (Zinc, Cadmium, Lead) adsorption onto surface modified activated carbon was performed in order to better understand the effect of sodium ion addition to activated carbon. Surface modification methods in this research included water washing, nitric acid washing, and sodium addition after nitric acid washing. These surface modifications generated oxygen functional groups with sodium ions on the surface of the activated carbon.. This caused the change of the specific surface area as well as in the ratio of the carboxyl groups. Heavy metal adsorption onto sodium-containing activated carbon was the most among the three modifications. After the adsorption of heavy metals, the carboxyl group ratio decreased and sodium ions on the surface of the activated carbon were almost non-existent after the adsorption of heavy metals onto sodium-containing activated carbon. The results from this research indicated that ion exchange with sodium ions in carboxyl groups effectively improved heavy metal adsorption rather than electrostatic adsorption and hydrogen ion exchange.

Impacts of Soil Microbial Populations on Soil Chemical and Biological Properties under Tropical Dry Evergreen Forest, Coromandel Coast, India

  • Sudhakaran, M.;Ramamoorthy, D.;Swamynathan, B.;Ramya, J.
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.4
    • /
    • pp.370-377
    • /
    • 2014
  • There are very few studies about soil chemical and biological properties under tropical dry evergreen forest Coromandel Coast, India. The present study was conducted in six tropical dry evergreen forests sites such as Oorani, Puthupet, Vadaagram, Kotthatai, Sendrakillai and Palvathunnan. We measured the quantity of soil chemical, biological properties and selected soil microorganisms for investigating the impacts of soil microbial populations on soil chemical and biological properties. The result showed that total N, P, Ca, S, Fe, Mn, Cu, Co, exchangeable K, Olson P, extractable Ca and phosphobacterial population were higher in the soil from Kothattai forest site. Organic carbon, total Mg, extractable Na, soil respiration, ${\beta}$-glucosidase activity, bacterial population, fungi population and actinomycetes population were higher in the soil from Palvathunn forest site. Total K, $NH_4{^+}$-N, $NO_3{^-}$-N, exchangeable K, extractable Ca, extractable Na, azotobacter population, bacillus population and rhizobacteria population were higher in the soil from Sendrakillai. Beijerinckia population, rhizobacteria and soluble sodium were higher in Puthupet forest soil. Total Si, total Na and exchangeable K were higher in soil from Oorani forest site. Total Mo and exchangeable K were higher in the soil from Vadaagaram forest site. The results showed that organic carbon, total N, $NH_4{^+}$-N, $NO_3{^-}$-N, extractable P, extractable Ca, soil respiration and ${\beta}$-glucosidase were significantly correlated with soil microbial populations. Therefore soil microorganisms are important factor for maintaining soil quality in tropical dry evergreen forest.

Discussion of Soil Respiration for Understanding Ecosystem Carbon Cycle in Korea (생태계 탄소순환 이해를 위한 국내 토양호흡 연구의 고찰)

  • Lee, Jae-Ho;Yi, Jun-Seok;Chun, Young-Moon;Chae, Nam-Yi;Lee, Jae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.2
    • /
    • pp.310-318
    • /
    • 2013
  • In territorial ecosystem, soil has stored considerable amount of carbon, and it is vulnerable to weakness release much of the carbon to atmosphere. In this study, we have been effort realization and discussion to the error between inter-instruments and measurement methods, time and special variations, gap filling and separation from each source included in soil respiration, used to collect soil respiration data in various ecosystems in Korea. In conclusion, it have to collect calibration data throughout comparison test between methods and instruments because accumulated data from past and accumulating data in present did not calibrated. In predicting change of soil carbon dynamic using the model method, it needs important data such as longterm and short-term data, artificial handling data of major factor, data from various ecosystem, soil texture, soil depth etc. In company with, we should collect highly qualified data through deep consideration of present problems.

Greenhouse Gas Emissions from Soils Amended with Biochar (바이오차르 토양투입에 따른 온실가스 발생 변화 연구)

  • Yoo, Gayoung;Son, Yongik;Lee, Seung Hyun;Yoo, Yena;Lee, Sang Hak
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.471-477
    • /
    • 2013
  • Biochar amendment to agricultural soil is regarded as a promising option to mitigate climate change and enhance soil quality. It could sequester more carbon within the soil system and increase plant yield by changing soil physicochemical characteristics. However, sustainable use of biochar requires comprehensive environmental assessment. In this sense, it is important to measure additional greenhouse gas emission from soils after biochar addition. We investigated emissions of $CO_2$, $N_2O$, and $CH_4$ from incubated soils collected from rice paddy and cultivated grassland after amendment of 3% biochar (wt.) produced from rice chaff. During incubation, soils were exposed to three wet-dry cycles ranging from 5~85% soil gravimetric water content (WC) to investigate the changes in effect of biochar when influenced by different water levels. The $CO_2$ emission was reduced in biochar treatment compared to the control at WC of 30~70% both in rice paddy and grassland soils. This indicates that biochar could function as a stabilizer for soil organic carbon and it can be effective in carbon sequestration. The $N_2O$ emission was also reduced from the grassland soil treated with biochar when WC was greater than 30% because the biochar treated soils had lower denitrification due to better aeration. In the rice paddy soil, biochar addition resulted in decrease in $N_2O$ emission when WC was greater than 70%, while an increase was noted when WC was between 30~70%. This increase might be related to the fact that available nutrients on biochar surface stimulated existing nitrifying bacterial community, resulting in higher $N_2O$ emission. Overall results imply that biochar amendment to agricultural soil can stabilize soil carbon from fast decomposition although attention should be paid to additional $N_2O$ emission when biochar addition is combined with the application of nitrogen fertilizer.

Soil Carbon Dioxide Flux and Organic Carbon in Grassland after Manure and Ammonium Nitrate Application

  • Lee, Do-Kyoung;Doolittle, James J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.238-244
    • /
    • 2005
  • Fertilization effects on changes in soil $CO_2$ flux and organic C in switchgrass (Panicum virgatum L.) land managed for biomass production were investigated. The mean daily soil $CO_2$ flux in the manure treatment was 5.63 g $CO_2-C\;m^{-2}\;d^{-1}$, and this was significantly higher than the mean value of 3.36 g $CO_2-C\;m^{-2}\;d^{-1}$ in the control. The mean daily $CO_2$ fluxes in N and P fertilizer treatments plots were not different when compared to the value in the control plots. Potentially mineralizable C (PMC), soil microbial biomass C (SMBC), and particulate organic C (POC) were highest at the 0 to 10 cm depth of the manure treatment. Potentially mineralizable C had the strongest correlation with SMBC (r = 0.91) and POC (r = 0.84). There was also a strong correlation between SMBC and POC (r = 0.90). Our results indicated that for the N and P levels studied, fertilization had no impact on temporal changes in soil organic C, but manure application had a significant impact on temporal changes in soil $CO_2$ evolution and active C constituents such as PMC, SMBC, and POC.

Development of humic acid extraction method in soil and sediment using ultrasonic for 14C dating (초음파를 이용한 14C 연대측정 토양시료의 부식산 추출법 개발)

  • Park, Jiyoun;Hong, Wan;Park, Junghun
    • Analytical Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.136-140
    • /
    • 2009
  • To improve the carbon recovery yield of chemical pretreatment in soil and sediment for $^{14}C$ age dating using AMS (Accelerator Mass Spectrometry), we have developed ultrasonic method in chemical pretreatment to replace with stirring method which has been generally used in each step of humic acid extraction for soil and sediment samples. Extraction conditions such as ultrasonic power, temperature and reaction time have been optimized. Six times higher carbon recovery yield could be obtained from low carbon content samples using ultrasonic method. We also compared the dating results by AMS obtained using ultrasonic method with the ages of samples treated by the stirring method. It was found that this new method could be applied to the pretreatment process of low carbon content samples for AMS age dating without effects on the dated ages, and with highly improved carbon recovery yields.