• Title/Summary/Keyword: Soil Textures

Search Result 141, Processing Time 0.022 seconds

Preprocessing and Calibration of Optical Diffuse Reflectance Signal for Estimation of Soil Physical and Chemical Properties in the Central USA (미국 중부 토양의 이화학적 특성 추정을 위한 광 확산 반사 신호 전처리 및 캘리브레이션)

  • La, Woo-Jung;Sudduth, Kenneth A.;Chung, Sun-Ok;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.430-437
    • /
    • 2008
  • Optical diffuse reflectance sensing in visible and near-infrared wavelength ranges is one approach to rapidly quantify soil properties for site-specific management. The objectives of this study were to investigate effects of preprocessing of reflectance data and determine the accuracy of the reflectance approach for estimating physical and chemical properties of selected Missouri and Illinois, USA surface soils encompassing a wide range of soil types and textures. Diffuse reflectance spectra of air-dried, sieved samples were obtained in the laboratory. Calibrations relating spectra to soil properties determined by standard methods were developed using partial least squares (PLS) regression. The best data preprocessing, consisting of absorbance transformation and mean centering, reduced estimation errors by up to 20% compared to raw reflectance data. Good estimates ($R^2=0.83$ to 0.92) were obtained using spectral data for soil texture fractions, organic matter, and CEC. Estimates of pH, P, and K were not good ($R^2$ < 0.7), and other approaches to estimating these soil chemical properties should be investigated. Overall, the ability of diffuse reflectance spectroscopy to accurately estimate multiple soil properties across a wide range of soils makes it a good candidate technology for providing at least a portion of the data needed in site-specific management of agriculture.

The Effect of Aircraft Traffic Emissions on the Soil Surface Contamination Analysis around the International Airport in Delhi, India

  • Ray, Sharmila;Khillare, P.S.;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.118-126
    • /
    • 2012
  • To investigate the effect of aircraft traffic emissions on soil pollution, metal levels were analyzed for 8 metals (Fe, Cr, Pb, Zn, Cu, Ni, Mn and Cd) from the vicinity of the Indira Gandhi International (IGI) airport in Delhi, India. The texture of the airport soil was observed to be sandy. Among the metals, Cd showed minimum concentration ($2.07{\mu}g\;g^{-1}$), while Fe showed maximum concentration ($4379{\mu}g\;g^{-1}$). The highest metal accumulation was observed at the landing site. Significant correlations were observed between metals and different textures (sand, silt, and clay) as well as with organic carbon (OC). The results indicate that grain size play a major role in OC retention in soil and subsequently helps in adsorption of metals in soil. M$\ddot{u}$ller's geoaccumulation index (I-geo) showed that airport soil was contaminated due to Cd and Pb with the pollution class 2 and 1, respectively. Pollution load index of the airport site was 1.34-3 times higher than the background site. The results of factor analysis suggested that source of the soil metal is mainly from natural weathering of soil, aircraft exhaust, and automobile exhaust from near by area. With respect to Dutch target values, the airport soils showed ~3 times higher Cd concentration. The study highlighted the future risk of enhanced metal pollution with respect to Cd and Pb due to aircraft trafficking.

Effects of Soil Textures by Soil Addition on the Growth and Quality of Oriental Melon (Cucumis melo L. var. makuwa Mak.) under Protected Cultivation (객토시 토성이 시설참외의 생육과 품질에 미치는 영향)

  • ;;;;Khan Zakaullah
    • Journal of Bio-Environment Control
    • /
    • v.13 no.3
    • /
    • pp.156-161
    • /
    • 2004
  • This study was conducted to investigate the effects of soil amendment with different characteristics on plant growth, fruit yield and quality of oriental melon for continuous cropping under protected cultivation. Humus layers in arable soil was disturbed because soil amendment from hillside to oriental melon field was continued to resolve problems for continuous cropping. Water potential and hardness of soil was decreased in sandy loam with lower clay contents compared with loam and silty clay. Leaf length and area, fresh and dry weight of plant at earlier growing stage were higher, but chlorophyll contents of leaves were dropped in sandy loam compared with silty clay soil. Fruit size and weight was higher in sandy loam, but soluble solid and color of fruit were increased in silty clay. Marketable and unmarketable yield and quantity of fermented fruit were the highest in sandy loam. Hardness and weight of fruit were decreased by longer storage period and soluble solids of fruit was peaked at 5 day after storage, but decreased by prolonged continued storage. Because of these results, soil characteristics of amendment to oriental melon field should be considered as an important factor for quality and yield of oriental melon.

Spatial distribution of halophytes and environment factors in salt marshes along the eastern Yellow Sea

  • Chung, Jaesang;Kim, Jae Hyun;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.264-276
    • /
    • 2021
  • Background: Salt marshes provide a variety of ecosystem services; however, they are vulnerable to human activity, water level fluctuations, and climate change. Analyses of the relationships between plant communities and environmental conditions in salt marshes are expected to provide useful information for the prediction of changes during climate change. In this study, relationships between the current vegetation structure and environmental factors were evaluated in the tidal flat at the southern tip of Ganghwa, Korea, where salt marshes are well-developed. Results: The vegetation structure in Ganghwa salt marshes was divided into three groups by cluster analysis: group A, dominated by Phragmites communis; group B, dominated by Suaeda japonica; and group C, dominated by other taxa. As determined by PERMANOVA, the groups showed significant differences with respect to altitude, soil moisture, soil organic matter, salinity, sand, clay, and silt ratios. A canonical correspondence analysis based on the percent cover of each species in the quadrats showed that the proportion of sand increased as the altitude increased and S. japonica appeared in soil with a relatively high silt proportion, while P. communis was distributed in soil with low salinity. Conclusions: The distributions of three halophyte groups differed depending on the altitude, soil moisture, salinity, and soil organic matter, sand, silt, and clay contents. Pioneer species, such as S. japonica, appeared in soil with a relatively high silt content. The P. communis community survived under a wider range of soil textures than previously reported in the literature; the species was distributed in soils with relatively low salinity, with a range expansion toward the sea in areas with freshwater influx. The observed spatial distribution patterns may provide a basis for conservation under declining salt marshes.

Effect of Nitrogen Split Application Methods under Different Soil Textures on Growth and Yield of Rice in Direct Seeding on Dry Paddy (벼 건답직파재배에서 토성별 질소분시방법이 생육에 수량에 미치는 영향)

  • Kim, Chung-Kon;Yun, Yong-Dae;Yang, Won-Ha;Oh, Yun-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.6
    • /
    • pp.731-737
    • /
    • 1995
  • This experiment was carried out at National Crop Experiment Station in 1994 to obtain basic information of growth characters and yield of rice under various nitrogen split application methods on different soil textures in direct seeding on dry paddy. Hwaseongbyeo sown on April 27 by flat drill seeding, and irrigation was done at 3 leaf stage after seedling establishment. Number of seedling stand was 159~177 seedlings per $m^2$ regardless of soil texture and nitrogen application method. Number of panicle per unit area in loam was higher than in sandy loam, and it also was higher in top dressing plots, which were 3 times application at rate of 40-30-30% (3rd leaf stage -7th leaf stage -panicle initiation stage) and 4 times application 10-30-30-30%(basal-3rd leaf stage -7th leaf stage -panicle initiation stage), than in conventional method. Leaf colour, leaf area index and dry matter production at heading stage were highest at top dressing plots among the nitrogen application methods in both sandy loam and loam. Lodging index in top dressing plots increased by low breaking weight with long culm. There were field lodging of degree 3 in top dressing plots. Rice yield in sandy loam, loam increased by 7~9%, 6~9% in top dressing of nitrogen, respectively.

  • PDF

Analysis of Irrigation Water Amount Variability based on Crops and Soil Physical Properties Using the IWMM Model (IWMM 모형을 이용한 작물과 토양의 물리적 특성에 따른 관개용수량 변동 특성 분석)

  • Shin, Yongchu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.37-47
    • /
    • 2017
  • In this study, we analyzed the variability of irrigation water amounts based on the combination of various crops and soil textures using the Irrigation Water Management Model (IWMM). IWMM evaluates the degree of agricultural drought using the Soil Moisture Deficit Index (SMDI). When crops are damaged by the water scarcity under the drought condition indicating that the SMDI values are in negative (SMDI<0), IWMM irrigates appropriate water amounts that can shift the negative SMDI values to "0" to crop fields. To test the IWMM model, we selected the Bandong-ri (BDR) and Jucheon (JC) sites in Gangwon-do and Jeollabuk-do provinces. We derived the soil hydraulic properties using the near-surface data assimilation scheme form the Time Domain Reflectrometry (TDR)-based soil moisture measurements. The daily root zone soil moisture dynamics (R: 0.792/0.588 and RMSE: 0.013/0.018 for BDR/JC) estimated by the derived soil parameters were matched well with the TDR-based measurements for validation. During the long-term (2001~2015) period, IWMM irrigated the minimum water amounts to crop fields, while there were no irrigation events during the rainy days. Also, Sandy Loam (SL) and Silt (Si) soils require more irrigation water amounts than others, while the irrigation water were higher in the order of radish, wheat, soybean, and potato, respectively. Thus, the IWMM model can provide efficient irrigation water amounts to crop fields and be useful for regions at where limited water resources are available.

Identification of Mycorrhizal Fungi Identified on Citrus Orchard Soils in The Island of Cheju (제주도 감귤원 토양에서 분리한 공생균근균의 동정)

  • Lee, Yong-Se;Chung, Jong-Bae;Moon, Doo-Khil
    • The Korean Journal of Mycology
    • /
    • v.26 no.1 s.84
    • /
    • pp.97-102
    • /
    • 1998
  • VA-mycorrhizal spores were collected from the 14 citurs orchards of different soil textures and locations in Cheju island. Five species and two kinds of spores were identified as based on the morphological characteristics of the spores; Acaulospora bireticulata, Glomus deserticola, G. geosporum, G. vesiculiferum, and Sclerocystis pachycaulis. Additionally, two kind spores of Acaulospora were also observed but difficult to be identified in this moment. Glomus deserticola and unidentified spores of Acaulospora (brown spores sized 90 to $125\;{\mu}m$ in diameter) were most frequently observed in the all soil specimens in Cheju, while the other kinds of spores were rarely observed in the soil of Cheju.

  • PDF

Assessment of Green House Gases Emissions using Global Warming Potential in Upland Soil during Pepper Cultivation (고추재배에서 지구온난화잠재력 (Global Warming Potential)을 고려한 토성별 온실가스 발생량 종합평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.886-891
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment have increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which caus an increase of temperature in Earth. Greenhouse gas emissions such as carbon dioxide ($CO_2$), methane ($CH_4$) and nitrous oxide ($N_2O$) in the Upland field need to be assessed. GHGs fluxes using chamber systems in two upland fields having different soil textures during pepper cultivation (2005) were monitored under different soil textures at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city, Korea. $CO_2$ emissions were 12.9 tonne $CO_2\;ha^{-1}$ in clay loam soil and 7.6 tonne $CO_2\;ha^{-1}$ in sandy loam soil. $N_2O$ emissions were 35.7 kg $N_2O\;ha^{-1}$ in clay loam soil and 9.2 kg $N_2O\;ha^{-1}$ in sandy loam soil. $CH_4$ emissions were 0.054 kg $CH_4\;ha^{-1}$ in clay loam soil and 0.013 kg $CH_4\;ha^{-1}$ in sandy loam soil. Total emission of GHGs ($CO_2$, $N_2O$, and $CH_4$) during pepper cultivation was converted by Global Warming Potential (GWP). GWP in clay loam soil was higher with 24.0 tonne $CO_2$-eq. $ha^{-1}$ than that in sandy loam soil (10.5 tonne $CO_2$-eq. $ha^{-1}$), which implied more GHGs were emitted in clay loam soil.

Effect of Soil Compaction Levels and Textures on Soybean (Glycine max L.) Root Elongation and Yield (토양 경반층 강도가 콩 뿌리신장 및 생육에 미치는 영향)

  • Jung, Ki-Yuol;Yun, Eul-Yoo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Jeon, Seung-Ho;Lee, Hwang-A
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.332-338
    • /
    • 2012
  • Soil compaction is one of the major problems facing modern agriculture. Overuse of machinery, intensive cropping, short crop rotations, intensive grazing and inappropriate soil management leads to compaction. This study was carried out evaluate of the effects soil texture and different compaction levels within the soil profile on the soybean root growth and productivity. The soybean plants were grown in $21cm{\o}{\times}30cm$ cylinder pots using three different soil textures (clay, fine loamy and coarse loamy) compacted at different compaction levels (1.25, 1.50, 1.75, and 2.00 MPa). Results revealed that soybean development is more sensitive on penetration resistance, irrespective of soil type. Soybean yield and root weight density significantly decreases with increasing levels of soil compaction in both clayey and fine loamy soils, but not in coarse loamy soil. The highest root weight density was recorded in coarse loamy soils, followed by fine loamy and clay soils, in descending order. The root growth by soil compaction levels started to decline from 1.16, 1.28 and 1.60 MPa for clay, fine loamy and coarse loamy soils. Soybean production in the field experiment decreased about 30% at compacted sub-soils compared to undisturbed soils.

Mobility of pesticides in different slopes and soil collected from Ganwon alpine sloped-land under simulated rainfall conditions (실내 인공강우를 이용한 강원도 고랭지 토양의 토성 및 경사도별 농약 이동특성)

  • Kim, Seong-Soo;Kim, Tae-Han;Lee, Sang-Min;Park, Dong-Sik;Zhu, Yong-Zhe;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.316-329
    • /
    • 2005
  • Mobility of pesticides can be occurred by run-off and leachate or soil erosion. It is one of the most important factors for environmental contamination, particularly in steep sloped-land as Gangwon alpine region. In this study, the mobility of seven pesticides in different slopes and soil textures was investigated by simulated rainfall under controlled conditions. Simulated rainfall subjected to 60 mm $hr^{-1}$ was treated using rainfall simulator after 12 hr of pesticide treatment. Amounts of the pesticides were measured in run-off and leachate samples. The soil samples collected after rainfall from upper and lower parts and three different depths of sloped-plot were also analyzed. At result, all pesticides from the un-off samples collected from Taebaek(silty clay loam) and Heongseong(sandy loam) soils were detected maximum 96% within 60 minutes after first collection except carbendazim and cypermethrin which have the lowest water solubilities. From the leachate samples, a similar pattern was shown as run-off samples but amount of pesticides was lower than those of run-off samples. In soil samples, the order of the amount of pesticide residues was $0{\sim}5$ > $5{\sim}10$ > $10{\sim}15$ cm of soil depth and no pattern was shown in upper and lower, and different slopes. Comparing to mobility of pesticides in water and soil samples, pesticides in soil samples were higher than those of water samples in Taebaek soil. However, the results using Heongseong soils were in contrast to those of Taebaek soil. These results revealed that mobility of pesticides can be dependant mainly on soil textures and physicochemical properties of pesticides. Therefore, it can be suggested that selection of pesticides should be considered for soil texture and properties of pesticide in the alpine and sloped-land.