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Preprocessing and Calibration of Optical Diffuse Reflectance Signal for Estimation
of Soil Physical and Chemical Properties in the Central USA
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Optical diffuse reflectance sensing in visible and near-infrared wavelength ranges is one approach to rapidly quantify soil
properties for site-specific management. The objectives of this study were to investigate effects of preprocessing of
reflectance data and determine the accuracy of the reflectance approach for estimating physical and chemical properties of
selected Missouri and Hlinois, USA surface soils encompassing a wide range of soil types and textures. Diffuse reflectance
spectra of air-dried, sieved samples were obtained in the laboratory. Calibrations relating spectra to soil properties
determined by standard methods were developed using partial least squares (PLS) regression. The best data preprocessing,
consisting of absorbance transformation and mean centering, reduced estimation errors by up to 20% compared to raw
reflectance data. Good estimates (R*=0.83 to 0.92) were obtained using spectral data for soil texture fractions, organic
matter, and CEC. Estimates of pH, P, and K were not good (R2<0.7), and other approaches to estimating these soil
chemical properties should be investigated. Overall, the ability of diffuse reflectance spectroscopy to accurately estimate
multiple soil properties across a wide range of soils makes it a good candidate technology for providing at least a portion
of the data needed in site-specific management of agriculture.
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1. INTRODUCTION

Precision agriculture (PA), also called site-specific crop
management (SSCM), has been widely used to improve farm
management practices and thus reduce management costs,
increase yield, and protect the environment from excessive

application of agricultural chemicals such as fertilizers, pesti-

cides, and herbicides. When implementing PA, site-specific
measurement of soil physical and chemical properties that
affect soil quality and crop production is important. How-
ever, when using conventional sampling and analysis techni-
ques, the time and cost required for the intensive sampli;lg
needed may be impractical. In this situation, sensor-based

in-field data collection may be desirable, allowing the collec-
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tion of geographically referenced data on a much finer
spatial resolution than is currently feasible with manual and/
or laboratory methods (Sudduth et al., 1997).

One approach to rapidly quantify soil properties for site-
specific management is optical diffuse reflectance sensing in
visible and near-infrared wavelength ranges. Diffuse reflec-
tance spectroscopy (DRS) is based on interaction between
incident light and soil surface properties and variation in the
characteristics of the reflected light due to the soil physical
and chemical propertiecs (Mouazen et al., 2005). Investi-
gators have estimated soil physical and chemical properties
using DRS in visible (VIS; 400-700 nm), near-infrared (NIR;
700-2500 nm), and mid-infrared (MIR; 2500-25000 nm) wave-
lengths. Mid-infrared spectra generally produce more accurate
results, but the technology is more complex and expensive
than for VIS-NIR measurement (Viscarra Rossel et al., 2006).
Because of this added cost and complexity, most DRS soil
sensing has been accomplished in the VIS, NIR, or VIS-
NIR wavelength ranges.

One major advantage of DRS for soil analysis is that the
same spectra can provide information about several soil
physical and chemical properties. These include texture
(sand, silt, and clay fractions) and pH, P, and K. Chang et
al. (2001) evaluated the ability of near-infrared reflectance
spectroscopy (NIRS) to predict multiple soil properties. They
estimated CEC, sand, and silt with R* > 0.80, while exchan-
geable K, clay and pH were estimated with less accuracy
(0.50<R2<0.80). Moron and Cozzolino (2003) also used
NIRS to predict the content of sand and clay in soils of
Uruguay. They obtained calibration R” values of 0.81, 0.83
and 0.92 for sand, silt, and clay fractions, respectively. Lee
et al. (2003) related spectral characteristics and chemical
properties of soil samples from major soil orders in Florida,
Their models accounted for more than 72% of the variation
observed in the validation set for soil pH, P, Ca, and Mg,
but less than 50% of the variation in K and soil organic
matter. The accuracy of reported spectral estimates of soil
properties has varied widely. For example, R” for soil organic
matter estimates has ranged from under 0.5 (e.g., Lee et al.,
2003) to over 0.9 (e.g., Sudduth and Hummel, 1991). The
accuracy of numerous past studies in estimating soil pro-

perties was reviewed by Viscarra Rossel et al. (2006).
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Preprocessing of spectral data before application of the
calibration mode} can improve accuracy {Duckworth, 2004).
A commonly used transformation is from reflectance to
absorbance, or logi (1/reflectance), to comply with Beer’s
Law. Another common transformation i1s mean centering,
which generally enhances differences between samples and
leads to more accurate calibration models. Additionally,
various types of filtering may be used to increase the signal-
to-noise ratio of the data. Because diffuse reflectance mea-
surements may be complicated by non-homogeneous distri-
bution of particles (soil in this case), several scattering correc-
tions have been developed, including the standard normal
variate (SNV), with or without detrending. Baseline shift
due to instrument drift or other effects can also significantly
affect spectra. Baseline issues are often addressed by a deri-
vative transformation of the spectral data (Duckworth, 2004).

This research was part of an overall project to develop
and apply soil sensing technology, including DRS, for pre-
cision agriculture management. In this specific study, the
focus was on preprocessing and calibration methodology for
DRS estimation of soil physical and chemical properties.
Specific objectives were (1) to investigate several data
preprocessing methods for application to the data and (2) to
develop and determine the accuracy of calibrations relating
spectra to laboratory-measured soil physical and chemical

properties using partial least squares (PLS) regression.

2. MATERIALS AND METHODS

A. Soil Samples

A total of 37 surface soils, 17 from Hlinois and 20 from
Missouri, were used in this study. These soils were selected
by Kim et al. (2007) to represent the diverse soil charac-
teristics of important agricultural areas of Illinois and Missouri,
and to provide a range of P and K concentration levels. The
Ilinois samples were sub-samples of soils used in previous
studies (Sudduth and Hummel, 1991; Birrell and Hummel,
2001; Price et al., 2003) and the Missouri soils included 16
soils used by Coggeshall et al. (2005) and 4 soils collected
from a long-term cropping system research site (Kitchen et
al., 2003).
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B. Laboratory Analysis

The soil samples used for laboratory analysis were ground
and screened using a 2-mm sieve and then oven-dried at
105°C before extraction. Soil pH, organic matter (OM) by
loss-on-ignition, and cation exchange capacity (CEC) by
sum of bases were determined in the University of Missouri
Soil and Plant Testing Laboratory. Clay, silt and sand frac-
tion were obtained by the hydrometer method. Procedures
for these analyses are documented in Nathan et al. (2006).
Sub-samples of the 37 soils were provided to a commercial
soil testing laboratory for P and K determination with an
ICP (Inductively Coupled Plasma) spectrophotometer using
methods described by Kim et al. (2007). Basic statistics of
the laboratory measurements are given in table 1. For all
except pH, the variation among the samples was quite large,
as shown by the wide ranges and high CVs. Thus, these
samples were expected to represent well the variability in
these soil properties seen within cropped fields across the

states of Missouri and Illinois.

C. Spectral Data Collection

Soil spectral data were obtained in the laboratory with a
FieldSpec Pro FRD spectrometer (Analytical Spectral Devices,
Boulder, Colo.). Spectra were recorded between 350 and
2500 nm and output on a 1-nm interval. The spectrometer
used three detector systems: 1) for 350-1000 nm a silicon
photodiode array, 2) for 1000-1830 nm an InGaAs detector,
and 3) for 1830-2500 nm, an enhanced InGaAs detector. For
reflectance data collection, subsamples of the soils collected

in the field were air dried and sieved with a 2-mm screen.

Table 1 Statistics of laboratory-measured soil properties

Approximately 15 cm’ of soil was packed in a glass-bottomed
sample cup for reflectance determination. The sample was
illuminated through the glass by a halogen lamp (“MugLite”
accessory of the spectrometer) and the reflected light was
transmitted to the spectrometer through a fiber optic bundle.
Each soil spectrum was obtained as the mean of 10 scans.
The spectrometer data collection software automatically
adjusted the data for dark current variations using dark cur-
rent scans obtained at the beginning of each data collection
session, and at least once every 30 minutes thereafter. A
Spectralon (Labsphere Inc., North Sutton, N.H.) reflectance
standard was scanned after every 10 soils and used to con-
vert the raw spectral data to decimal reflectance. Three repli-
cate measurements were obtained for each soil samples,
resulting of 111 spectra (Fig. 1).

Reflectance data were preprocessed to improve stability of

the regression. The first 100 readings (350-459 nm) and the

0.7

086

05

Decimal Reflectance

400 800 1200 1600 2000 2400
Wavelength, nm

Fig. 1 Reflectance spectra for the soil samples (37 samples x 3
replicate measurements).

Soil property and units Mean Std. Dev. Min. Max. CV, %
pH 5.87 0.70 43 7.1 12
oM, % 2.49 1.01 03 44 41
CEC, meq 100 g’ 132 5.5 3.4 27.5 41
Clay, % 17.2 6.7 4.0 33.0 39
Silt, % 55.4 19.7 9.0 83.0 36
Sand, % 27.3 24.1 4.0 87.0 88
P, mg L' 74.0 519 213 235.8 70
K, mg L™ 174.5 109.8 519 4455 63

1) Mention of trade names or commercial products is solely for the purpose of providing specific information and does not imply recommendation
or endorsement by Gyeongsang National University, USDA-ARS, or their cooperators.
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last 50 readings (2451-2500 nm) were deleted due to their
low signal-to-noise ratio; thus the revised spectra began at
450 nm and ended at 2450 nm. (Fig. 1).

D. Analytical Procedures

Partial least squares (PLS) regression implemented in Parles
version 3.1 (Viscarra Rossel, 2008) was used to develop
calibrations between soil properties and reflectance spectra.
PLS has been widely used in chemometrics, remote sensing,
and spectral data processing to deal with large datasets with
highly correlated variables. PLS is a full-spectrum method,
in that it uses information from all wavelengths in the
original spectrum to develop a calibration algorithm. In PLS
calibration, a new set of variables (factors) is created. The
factors are statistically independent from one another and
are constructed such that they capture variation in both the
response (soil) and predictor (spectral) variables (Beebe and
Kowalski, 1987). As in all multivariate regression, it is impor-
tant to select the number of factors that best represents the
calibration data without overfitting. To do this, we applied
a leave-one-out-cross-validation procedure within the ParLes
software. As suggested by Viscarra Rossel (2008), we selected
the number of factors for each model at the minimum value
of the Akaike Information Criterion (AIC), first given by
Akaike (1969). ParLes calculated the validation dataset vari-
ance, coefficient of determination (RZ), root mean square
error (RMSE) and RPD, the ratio of the standard deviation
to the RMSE of cross-validation predictions. RPD is a use-
ful measure of fit when comparing results from datasets con-
taining different degrees of variability, with a higher RPD
indicating a more accurate prediction (Williams, 1987).

What values of these fit parameters constitute a “good”
model is somewhat subjective. Saeys et al. (2005) stated
that R* values from 0.50 to 0.65 indicated the ability to
discriminate between high and low concentrations, while
approximate quantitative prediction, good prediction, and
excellent prediction were possible from models with R® of
0.66 to 0.81, 0.82 to 0.90, and greater than 0.91, respec-
tively. Their corresponding categories for RPD were 1.5 to
2.0, 20 to 2.5, 2.5 to 3.0, and above 3.0. Chang et al
(2001) classified the ability of NIR-DRS to estimate soil
properties into three categories based on RPD ranges (< 1.4,
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1.4-2.0, and > 2.0). After considering the criteria used by
previous researchers, we defined the following categories:
poor estimation when R* < 0.65 or RPD < 1.5, fair esti-
mation with 0.65 <R”<0.80 or 1.5<RPD<2.0, and good
estimation when R* > 0.80 or RPD > 2.0 as suggested by
Lee et al. (2007).

Many different preprocessing methods that may be appro-
priate in PLS spectral analysis (Duckworth, 2004) were
available in the Parles software (Viscarra Rossel, 2008).
From these available methods, it was necessary to select the
best method or methods for use with the specific dataset of
this study. Based on past experience and preliminary data
analysis, we investigated the following combinations of pre-

processing steps on a subset of the dependent variables:

Raw reflectance data with no transformation
Absorbance transformation

Absorbance + mean centering

Absorbance + mean centering + SNV

Absorbance + mean centering + SNV +detrending

Absorbance + mean centering + median filter (rank 2)

I Sl

Absorbance + mean centering + 1st derivative

Analysis of the complete dataset was then done using the
preprocessing approach which provided the best results in

this preliminary analysis.

3. RESULTS AND DISCUSSION

A. Selection of Preprocessing Method

The various preprocessing methods described above were
applied for estimation of OM and pH (table 2). Considering
both variables, two combinations provided the best results:
absorbance transformation plus mean centering, and absor-
bance plus mean centering plus rank 2 median filter. There-
fore, in the interest of simplicity, we chose the combination
of absorbance plus mean centering for the estimation of all
soil properties. This combination reduced RMSE by 5 to

20% compared to the untransformed reflectance data,

B. Calibration Model Development

Table 3 shows the leave-one-out cross-validated PLS results
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Table 2 Comparison of data manipulation combinations for pH and OM by leave-one-out cross-validation. Optimum number of PLS factors

was selected based on minimizing AIC

Data manipulation Soil property O(I:;lr;]tusn fl; zzfser R’ RMSE RPD
Raw reflectance data with no pH 13 0.457 0.553 1.26
transformation OM 12 0.871 0.362 2.79
Absorbance transformation pH 12 0995 0445 156
oM 12 0.859 0.379 2.66
Absorbance + mean centering pH 12 0611 043> L0
OM 12 0.884 0.343 2.94
Absorbance + mean centering + SNV pH ! 0.647 0412 Lo
OoM 10 0.842 0.40 252
Absorbance + mean centering + SNV pH 10 0.647 0413 1.69
+ detrending OM 7 0.809 0.440 2.29
Absorbance + mean centering + rank 2 pH 12 0.613 0.434 1.61
median filter OM 12 0.885 0.341 295
Absorbance + mean centering + 1st pH 0.125 0.668 1.04
derivative OM 0.620 0.621 1.62
for all soil properties. Using the R’ and RPD criteria defined On the other hand, soil texture, OM, and CEC are more
above, there were good estimations of OM, CEC, clay, silt long-term natural factors of soil development and weathering.
and sand (0.833 < R® < 0.922 and 2.45 < RPD < 3.60), and It may be that the VIS-NIR reflectance approach can not
fair estimation of P (R2=0.683, RPD =1.77). Estimations of successfully estimate soil chemical properties where the
pH and K were poor (0.611 < R* < 0.612), or fair (1.60 < majority of the variation is due to the addition of chemical
RPD = 1.61) by these criteria, and therefore did not pro- fertilizers. This observation is supported by Lee et al. (2007)
vide accurate estimates. who found that VIS-NIR data provided good estimates of
The estimates of texture fractions, OM, and CEC are pH across a soil profile, while pH estimates in surface soil,
comparable to some of the better results reported in the where the direct effect of lime addition was greater, were
literature (Sudduth and Hummel, 1991; Chang et al., 2001; not good. Another issue may be that the laboratory P and
Moron and Cozzolino, 2003; Cozzolino and Moron, 2003). K data used in this analysis was from standard methods
The lower accuracies for pH, P, and K may be due to the calibrated to provide estimates of plant-available nutrients.
anthropogenic effects of fertilizer and lime additions in the Although reflectance analysis may be sensitive to chemical
agricultural fields from which the samples were collected. concentrations, it is likely not able to discriminate between
Table 3 PLS leave-one-out-cross-validation statistics
Soil Property Opt";‘L“Sn g‘cl:‘:'r’:r of R? RMSE RPD
pH 12 0.611 0.435 1.60
oM 12 0.884 0.343 2.94
CEC 12 0.833 2.229 245
clay 17 0.881 2.325 2.89
silt 17 0.901 6.185 3.19
sand 18 0.922 6.700 3.60
P 12 0.683 29.312 177
K 8 0.612 68.23 1.61

434



P and K that are plant available and those that are not.
Figure 2 shows scatter plots of measured vs. predicted
values of the eight soil properties studied. For OM, CEC
and clay, good agreement was obtained between the observed
and predicted values for the full range. In the case of silt,

a better prediction was displayed at lower and medium
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values. On the other hand, in the case of sand, a better
prediction was displayed at medium and higher values. This
variation may have been due to the differences in texture
characteristics of the samples, with many more having high
silt and low sand than the opposite. Plots of pH, P, and K

showed that the low accuracy for these variables was due

Estimated OM (%)
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O ¥ T T 1
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Fig. 2 Soil properties estimated by PLS analysis of spectral data as compared to those obtained by standard laboratory analyses.

435



013 3% £Y9 ooy S4 FHS U T TY YA AT BN Y Bejsaoly

to a large amount of scatter over the full range.

Overall, diffuse reflectance spectroscopy provided good
results for direct estimation of many soil properties. One
major advantage of diffuse reflectance spectroscopy for soil
analysis is that many soil properties may be estimated from
the same spectra. Also, the technique is rapid and requires
relatively little sample preparation, making it possible to
analyze many samples in a practical and timely manner.
Combined with appropriate analysis methods such as PLS
regression, this offers the possibility for considerable cost
savings and increased efficiency over conventional laboratory
analysis methods, an advantage particularly important with

the level of analysis required for precision agriculture.
4. SUMMARY AND CONCLUSIONS

The purpose of this study was to investigate the reflec-
tance approach for estimating physical and chemical pro-
perties of surface soil samples obtained from across the
states of Missouri and Illinois. Diffuse reflectance spectra of
air-dried, sieved samples were obtained from 350 to 2500 nm
in the laboratory. Calibrations relating spectra to laboratory-
measured soil properties were developed using partial least

squares (PLS) regression. Major findings were:

(1) The best data preprocessing method was found to be a
combination of absorbance transformation and mean
centering.

(2) Good estimates (R2 =0.83 to 0.92) were obtained using
spectral data for soil texture fractions, organic matter,
and CEC. Estimates of pH, P, and K were not good (R’
< 0.7).

(3) For OM, CEC and clay, there was good agreement
between observed and estimated values for the full range.
For silt, a better estimate was produced at lower and
medium values. On the other hand, for sand, a better

estimate was produced at medium and higher values.

Diffuse reflectance spectroscopy, combined with appropriate
preprocessing and analysis methods, successfully estimated
many soil properties in this study. However, because this

methodology was not able to provide good estimates of
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specific chemical constituents (i.e., pH, P, and K), other
technologies should be investigated for more accurate sensor-
based measurement of soil chemical properties. In this study,
a limited number of data (i.e., 37) was used for model
development and leave-one-out-cross-validation, and further
investigation would be necessary with a greater number of

data and other validation methods.
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