DOI QR코드

DOI QR Code

Preprocessing and Calibration of Optical Diffuse Reflectance Signal for Estimation of Soil Physical and Chemical Properties in the Central USA

미국 중부 토양의 이화학적 특성 추정을 위한 광 확산 반사 신호 전처리 및 캘리브레이션

  • La, Woo-Jung (Dept. of Bioindustrial Machinery Engineering and Institute of Agriculture & Life Sciences Gyeongsang National University) ;
  • Sudduth, Kenneth A. (Agriculture Engineer, Cropping Systems and Water Quality Research Unit, USDA-ARS) ;
  • Chung, Sun-Ok (Dept. of Bioindustrial Machinery Engineering, Chungnam National University) ;
  • Kim, Hak-Jin (School of Biosystems Engineering, Pusan National University)
  • Published : 2008.12.25

Abstract

Optical diffuse reflectance sensing in visible and near-infrared wavelength ranges is one approach to rapidly quantify soil properties for site-specific management. The objectives of this study were to investigate effects of preprocessing of reflectance data and determine the accuracy of the reflectance approach for estimating physical and chemical properties of selected Missouri and Illinois, USA surface soils encompassing a wide range of soil types and textures. Diffuse reflectance spectra of air-dried, sieved samples were obtained in the laboratory. Calibrations relating spectra to soil properties determined by standard methods were developed using partial least squares (PLS) regression. The best data preprocessing, consisting of absorbance transformation and mean centering, reduced estimation errors by up to 20% compared to raw reflectance data. Good estimates ($R^2=0.83$ to 0.92) were obtained using spectral data for soil texture fractions, organic matter, and CEC. Estimates of pH, P, and K were not good ($R^2$ < 0.7), and other approaches to estimating these soil chemical properties should be investigated. Overall, the ability of diffuse reflectance spectroscopy to accurately estimate multiple soil properties across a wide range of soils makes it a good candidate technology for providing at least a portion of the data needed in site-specific management of agriculture.

Keywords

References

  1. Akaike, H. 1969. Fitting autoregressive models for prediction. Annals Inst. Stat. Math. 21:243-247 https://doi.org/10.1007/BF02532251
  2. Beebe, K. R. and B. R. Kowalski. 1987. An introduction to multivariate calibration and analysis. Anal. Chem. 59(1):1007A-1017A https://doi.org/10.1021/ac00134a018
  3. Birrell, S. J. and J. W. Hummel. 2001. Real-time multi ISFET/ FIA soil analysis system with automatic sample extraction. Comp. Elect. Agric. 32:45-67 https://doi.org/10.1016/S0168-1699(01)00159-4
  4. Chang, C. W., D. A. Laird, M. J. Mausbach and C. R. Hurburgh. 2001. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Sci. Soc. Am. J. 65:480-490 https://doi.org/10.2136/sssaj2001.652480x
  5. Coggeshall, B., J. Lory and P. C. Scharf. 2005. Soil specific phosphorus and potassium buildup and critical values. In ASA, CSSA, and SSSA Annual Meeting Abstracts [CDROM]. Madison, Wisc.: ASA, CSSA, and SSSA
  6. Cozzolino, D. and A. Moron. 2003. The potential of nearinfrared reflectance spectroscopy to analyse soil chemical and physical characteristics. J. Agric. Sci.140:65-71 https://doi.org/10.1017/S0021859602002836
  7. Duckworth, J. 2004. Mathematical data preprocessing. Near-Infrared Reflectance Spectroscopy, Agronomy Monograph 44. pp.115-132. ASA, CSSA, and SSSA, Madison, Wisc
  8. Kim, H. J., J. W. Hummel, K. A. Sudduth and P. P. Motavalli. 2007. Simultaneous analysis of soil macronutrients using ionselective electrodes. Soil Sci. Soc. Am. J. 71(6):1867-1877 https://doi.org/10.2136/sssaj2007.0002
  9. Kitchen, N. R., K. A. Sudduth, D. B. Myers, R. E. Massey, E. J. Sadler, R. N. Lerch, J. W. Hummel and H. L. Palm. 2005. Development of a conservation-oriented precision agriculture system: crop production assessment and plan implementation. J. Soil Water Conserv. 60:421-430
  10. Lee, K. S., D. H. Lee, K. A. Sudduth, S. O. Chung and S. T. Drummond. 2007. Wavelength identification for reflectance estimation of surface and subsurface soil properties. ASABE Paper No. 071046. ASABE, St. Joseph, Mich
  11. Lee, W. S., J. F. Sanchez, R. S. Mylavarapu and J. S. Choe. 2003. Estimating chemical properties of Florida soils using spectral reflectance. Trans. ASAE 46(5):1443-1453
  12. Moron, A. and D. Cozzolino. 2003. Exploring the use of near infrared reflectance spectroscopy to study physical properties and microelements in soils. J. Near Infrared Spect. 11:145-154 https://doi.org/10.1255/jnirs.362
  13. Mouazen, A. M., J. D. Baerdemaeker and H. Ramon. 2005. Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer. Soil Till. Res. 80:171-183 https://doi.org/10.1016/j.still.2004.03.022
  14. Nathan, M., Stecker, J. and Sun, Y. 2006. Soil Testing in Missouri: A Guide for Conducting Soil Tests in Missouri. Extension Circular 923, 4/06 revision. Missouri Cooperative Extension Service, Columbia, Mo. (available online at: http://soilplantlab.missouri.edu/soil/ soiltestinginmissouri.pdf)
  15. Price, R. R., J. W. Hummel, S. J. Birrell and I. S. Ahmad. 2003. Rapid nitrate analysis of soil cores using ISFETs. Trans. ASAE 46:601-610
  16. Saeys, W., A. M. Mouazen and H. Ramon. 2005. Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosys. Eng. 91(4):393-402 https://doi.org/10.1016/j.biosystemseng.2005.05.001
  17. Sudduth, K. A. and J. W. Hummel. 1991. Evaluation of reflectance methods for soil organic matter sensing. Trans. ASAE 34:1900-1909 https://doi.org/10.13031/2013.31816
  18. Sudduth, K. A., J. W. Hummel and S. J. Birrell. 1997. Sensors for site-specific management. The State of Site-Specific Management for Agriculture, F. J. Pierce and E. J. Sadler (eds.). pp.183-210. ASA, CSSA, and SSSA, Madison Wisc
  19. Viscarra Rossel, R. A. 2008. ParLeS: Software for chemometric analysis of spectroscopic data. Chemometrics Intelligent Lab. Sys. 90:72-83 https://doi.org/10.1016/j.chemolab.2007.06.006
  20. Viscarra Rossel, R. A., D. J. J. Walvoort, A. B. McBratney, L. J. Janik and J. O. Skjemstad. 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geordema 131:59-75
  21. Williams, P. C. 1987. Variables affecting near-infrared reflectance spectroscopic analysis, Near-infrared Technology in the Agricultural and Food Industries, P. C. Williams and K. H. Norris (eds.). pp.143-167. American Association of Cereal Chemists, St. Paul, Minn

Cited by

  1. Soil Profile Measurement of Carbon Contents using a Probe-type VIS-NIR Spectrophotometer vol.34, pp.5, 2009, https://doi.org/10.5307/JBE.2009.34.5.382
  2. Soil macronutrient sensing for precision agriculture vol.11, pp.10, 2009, https://doi.org/10.1039/b906634a
  3. Soil organic matter and cation-exchange capacity sensing with on-the-go electrical conductivity and optical sensors vol.199, 2013, https://doi.org/10.1016/j.geoderma.2012.11.001