• Title/Summary/Keyword: Soil Surface Discharge

Search Result 99, Processing Time 0.023 seconds

A study of seasonal variation of the residual flow before and after Saemangeum reclamation (새만금간척전 .후 잔차류의 계절변화에 관한 연구)

  • 신문섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.155-161
    • /
    • 1999
  • The land reclamation area of Saemangeum(Kunsan) is located between 126$^{\circ}$10' E~126$^{\circ}$50' E and 35$^{\circ}$35' N~356$^{\circ}$05'N at the western coast of the Korean peninsula. The are many small islands including extensive areas of semi-diurnally flooded and dewatered tidal flats. The reclamation area of Saemangeum has a range of 5.6m spring tide and the maximum tidal current speed is about 1.41m s-1 in ordinary spring tide. Most of the sediments deposited on the tidal flats are transported from the Geum river, the Manjyung river and The Dongjin river. The soil in this area consists of silty sand with the depth of 10m to 30m . The wind in winter is strong from the direction of northwest. In the past twenty years, land reclamation projects for agricutural purpose or industrial cocmplex have been mostly implemented along the western coast of Korea. Saemangeum coastal area is being constructed the33km sea dike and 40, 100ha reclamation area. The purpose of this study is to find the residual circulations in four seasons after the dike construction by a robust diagnostic and prognostic numerical model. Heat flux at the sea surface in January ,May , August , October was asopted on the basis on the daily inflow of solar radiation at the earth surface, assuming an average atomospheric transmission and no clouds , as a function of latitude and time of year(George L.P.J.E William, 1990). The discharge from the Geum , the Mankyung and the Dongjin rivers was adopted on the basis of experience formula of river flow in January , May ,August, October (The M. of C.Korea, 1993) . Water temperature and salinity along the open boundaries are obtained from the results of field observation s.

  • PDF

Comparison of Pollutant Load Discharge Characteristics with Chemical Fertilizer and Organic Compost Applications (화학비료와 유기비료 시비후 오염배출 농도 특성 비교)

  • Lyou, Chang-Woun;Shin, Yong-Cheol;Heo, Sung-Gu;Choi, Ye-Hwan;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.490-495
    • /
    • 2005
  • Organic compost has been widely applied to the cropland because it has been thought as Environmentally Sound Agriculture (ESA) in Korea. However, many field researches have been done to investigate water quality impacts of organic compost uses, compared to those from chemical fertilizer applications. It was found that pollutant loads from organic compost applied croplands were higher than those from chemical fertilizer applied areas. However, there might be other unknown factors affecting the results since the experiments were performed at the outside fields. In this study, indoor rainfall experiments using the Norton rainfall simulator systems were done to minimize and exclude errors from unknown sources by controlling soil characteristics, rainfall amount, rainfall intensity, and fertilizer treatments. The amounts of surface runoff and groundwater percolated from 10% and 20% slope plots were measured and water quality samples were collected and analyzed for BOD, COD, and T-P. Flow weighted mean concentration (FWMC) values were computed to assess effects of different fertilizer treatments. It was found that average concentration values of BOD were 5.57 mg/L from chemical fertilizer treated plot and 8.08 mg/L from organic compost treated plots. For 10% slope, FWMC BOD values from organic compost treated plots were higher by 29.9% than those from chemical fertilizer treated plots. For 20% slope, FWMC BOD values from organic plots were higher by 38.8% than those from chemical fertilizer plots. FWMC BOD values for 20% slope plots were higher than those from those for 10% slope plots. The similar trends were found for COD and T-P. In Korea, excessive use of organic compost has caused extremely high levels of organic matter contents at the cropland. Organic compost are usually applied to the cropland to improve soil quality, while chemical fertilizer is applied to help crop growth. Since organic compost is very slow in releasing its nutrients to the soil, farmers usually apply excessive organic compost for immediate effects and maximum crop yields, which has been causing soil and water quality degradations. Therefore, thorough investigations for better nutrient management plans are needed to develop the ESA strategy in Korea.

  • PDF

Hydro-Biogeochemical Approaches to Understanding of Water and Carbon Cycling in the Gwangneung Forest Catchment (수문생지화학적 접근을 통한 광릉 산림 유역의 물과 탄소 순환 이해)

  • Kim, Su-Jin;Lee, Dong-Ho;Kim, Joon;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.109-120
    • /
    • 2007
  • The information on flowpath, storage, residence time, and interactions of water and carbon transport in a catchment is the prerequisite to the understanding and predicting of water and carbon cycling in the mountainous landscapes of Korea. In this paper, along with some up-to-date results, we present the principal methods that are currently used in HydroKorea and CarboKorea research to obtain such information. Various catchment hydrological processes have been examined on the basis of the water table fluctuations, the end-member mixing model, the cross correlation analysis, and cosmogenic radioactive isotope activity. In the Gwangneung catchment, the contribution of surface discharge was relatively large, and the changes in the amount, intensity and patterns of precipitation affected both the flowpath and the mean residence time of water. Particularly during the summer monsoon, changes in precipitation patterns and hydrological processes in the catchment influenced the carbon cycle such that the persistent precipitation increased the discharge of dissolved organic carbon (DOC) concentrated in the surface soil layer. The improved understanding of the hydrological processes presented in this report will enable a more realistic assessment of the effects of climate changes on the water resource management and on the carbon cycling in forest catchments.

Development of Continuous Rainfall-Runoff Model for Flood Forecasting on the Large-Scale Basin (대유역 홍수예측을 위한 연속형 강우-유출모형 개발)

  • Bae, Deg-Hyo;Lee, Byong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • The objective of this study is to develop a continuous rainfall-runoff model for flood prediction on a large-scale basin. For this study, the hourly surface runoff estimation method based on the variable retention parameter and runoff curve number is developed. This model is composed that the soil moisture to continuous rainfall can be simulated with applying the hydrologic components to the continuous equation for soil moisture. The runoff can be simulated by linking the hydrologic components with the storage function model continuously. The runoff simulation to large basins can be performed by using channel storage function model. Nakdong river basin is selected as the study area. The model accuracy is evaluated at the 8 measurement sites during flood season in 2006 (calibration period) and 2007~2008 (verification period). The calibrated model simulations are well fitted to the observations. Nash and Sutcliffe model efficiencies in the calibration and verification periods exist in the range of 0.81 to 0.95 and 0.70 to 0.94, respectively. The behavior of soil moisture depending on the rainfall and the annual loadings of simulated hydrologic components are rational. From this results, continuous rainfall-runoff model developed in this study can be used to predict the discharge on large basins.

Effects on Water Quality and Rice Growth to Irrigation of Discharge Water from Municipal Waste Treatment Plant in Rice Paddy during Drought Periods (한발기 벼 재배시 하수종말처리장 방류수 관개에 따른 논의 수질 및 벼 생육에 미치는 영향)

  • Shin, Joung-Du;Lee, Jong-Sik;Kim, Won-Il;Jung, Goo-Bok;Kim, Jin-Ho;Yun, Sun-Gang;Choi, Chul-Mann
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.225-230
    • /
    • 2008
  • Objective of this study was to access the environmental impacts of the use of discharge water from municipal waste water treatment plant as alternative irrigation resources during drought season for rice cultivation. For the field experiments, it was observed that plant growth and yield characteristics at 20 days of alternative irrigation period with application of FAST (fertilizer application based on soil test) 50% were relatively the same as the control. For the surface water quality, it appeared that $EC_i$ (electrical conductivity of irrigation water) and SAR (sodium adsorption ratio) values of DMWT (discharge waters from municipal wastewater treatment plant) irrigation were twofold higher than those of ground water irrigation as the control regardless of fertilization levels. For the irrigation periods, there were not significantly difference between 10 and 20 days of treatments, but $EC_i$ and SAR values of surface water were highest at 30 days of irrigation periods at initial rice growing stages. Generally, $EC_i$ values of percolation water in all the treatments were gradually increasing until 30days after irrigation, and then decreasing to harvest stage. Overall, it might be considered that there was possibility to irrigate DMWT with application of FAST 50% for 20 days of drought periods at rice transplanting season. Furthermore, efficiency rate of alternative irrigation water for 20 days of drought period was 32.7% relative to the total annual irrigation water for rice cultivation.

Contamination Assessment of Water Quality and Stream Sediments Affected by Mine Drainage in the Sambo Mine Creek (삼보광산 수계 하천수질 및 퇴적토의 오염도 평가)

  • Jung, Goo-Bok;Kwon, Soon-Ik;Hong, Sung-Chang;Kim, Min-Kyeong;Chae, Mi-Jin;Kim, Won-Il;Lee, Jong-Sik;Kang, Kee-Kyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.122-128
    • /
    • 2012
  • BACKGROUND: Mine drainage from metal mining districts is a well-recognized source of environmental contamination. Oxidation of metal sulfides in mines, mine dumps and tailing impoundments produces acidic, metal-rich waters that can contaminate the local surface water and soil. METHODS AND RESULTS: This experiment was carried out to investigate the pollution assessment of heavy metal on the water quality of mine drainage, paddy soils and sediment in lower watershed affected by mine drainage of the Sambo mine. The average concentrations of dissolved Cd (0.018~0.035 mg/L) in mine drainage discharged from the main waste rock dumps(WRD) was higher than the water quality standards (0.01 mg/L) for agricultural water in Korea. Also, the average concentrations of dissolved Zn, Fe and Mn were higher than those of recommended maximum concentrations (Zn 2.0, Fe 5.0, Mn 0.2 mg/L) of trace metal in irrigation water proposed by FAO (1994). The average contents of Pb and Zn in paddy soils was higher than those of standard level for soil contamination(Pb 200, Zn 300 mg/kg) in agricultural soil by Soil Environmental Conservation Act in Korea. Also, the concentrations of Cd, Pb and Zn in sediment were higher than those of standard level for soil contamination (Cd 10, Pb 400, Zn 600 mg/L) in waterway soil by Soil Environmental Conservation Act in Korea. The enrichment factor (EFc) of heavy metals in stream sediments were in the order as Cd>Pb>Zn> As>Cu>Cr>Ni. Also, the geoaccumulation index (Igeo) of heavy metals in stream sediments were in the order as Zn>Cd>Pb>Cu>As>Cr>Ni, specially, the geoaccumulation index (Igeo) of Zn (Igeo 3.1~6.2) were relatively higher than that of other metals in sediment. CONCLUSION(s): The results indicate that stream water and sediment were affected by mine drainage discharged from the Sambo mine at least to a distance of 1 km downstream (SN-1, SN-2) of the mine water discharge point.

A Study on Performance of Double-Core PBD for Improving Thick Reclaimed Ground (대심도 연약지반 개량을 위한 이중코어 PBD 성능연구)

  • Yang, Jeong-Hun;Hong, Sung-Jin;Lee, Woo-Jin;Choi, Hang-Seok;Kim, Hyung-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.281-292
    • /
    • 2008
  • Prefabricated Board Drains (PBDs) recently become more widely used than conventional sand drains in improving soft ground because the PBD is more time and cost effective. The performance of PBDs is affected by disturbance in the adjacent soil formation during inserting mandrels, the intrusion of fine particles into filter fabric, and necking of the drain by excessive lateral pressure especially occurring in very deep clay formation such as the Busan New Port site. In this study, the PBD with double-core is introduced, which seems to overcome the shortcomings of usual single-core PBDs. An in-situ test program was established in the Busan New Port site, in which a set of the double-core PBDs and the single-core PBDs was installed to compare the efficiency of each of the drains. The discharge capacity of the double-core and the single-core PBDs was compared for various confining pressures in the modified Delft test and the chamber test. A series of CRS consolidation tests was performed in order to obtain profiles of void ratio-effective stress and void ratio-permeability relationships in the Busan New Port site that are used as input date in performing a numerical program ILLICON. The numerically simulated settlements of ground surface in the test site are in good agreement with those of in-situ measurements. In addition, the performance of the double-core and single-core PBDs has been experimentally and numerically compared in this paper.

  • PDF

Analysis of Seepage Velocity in Unsaturated Weathered Soils Using Rainfall Infiltration Test (강우침투실험을 통한 불포화 풍화토 지반의 강우 침투속도 분석)

  • Kim, Hoon;Shin, Ho-Sung;Kim, Yun-Tae;Park, Dug-Keun;Min, Tuk-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Rainfall infiltration test under one dimensional condition is conducted to evaluate the effect of rainfall intensity on seepage velocity and infiltration characteristics for initial unsaturated sediment. Experimental results are compared with those numerical simulations with respect to variations of pore water pressure, degree of saturation and discharge velocity with time, and both results give good agreement. High rainfall intensity tends to increase seepage velocity almost linearly. But it shows rapid increase as rainfall intensity approaches saturated hydraulic conductivity of the sediment. In addition, the upper part of wetting front depth is partially saturated, not fully. Therefore, actual wetting front depth is considered to advance faster than theoretical prediction, which leads to slope instability of unsaturated slope due to surface rainfall.

A Suggestion of Formulae to Calculate Sectional Tractive Force on the Slope of Cohesive River Bank and its Application (점착성 제방사면의 구간별 소류력 산정식 제안 및 적용)

  • Han, Man-Shin;Choi, Gye-Woon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.583-596
    • /
    • 2012
  • The revetment is a installed structure on the slope of river bank to protect against flowing. Through the design standards of domestic and overseas, the maximum tractive force is calculated and applied to the average concept on the slope of river bank. In the case of calculating the method of permissible tractive force on the slope of river bank, there is a need to consider soil sliding. In this study, suggested the tractive force formulae by section of adhesion that have 0 < ${\Phi}$ < $90^{\circ}$ slope of river bank and installed an open channel of length of 20 m and 2 m wide for calculating permissible tractive force and hydraulic model experimented with changing discharge. According to the results, the calculated permissible tractive force of section on the slope is the largest due to the significant effects of surface roughness of different revetment materials. In addition, the permissible tractive force increased in the presence of vegetation but has no the effect by vegetation density.

Application of The Semi-Distributed Hydrological Model(TOPMODEL) for Prediction of Discharge at the Deciduous and Coniferous Forest Catchments in Gwangneung, Gyeonggi-do, Republic of Korea (경기도(京畿道) 광릉(光陵)의 활엽수림(闊葉樹林)과 침엽수림(針葉樹林) 유역(流域)의 유출량(流出量) 산정(算定)을 위한 준분포형(準分布型) 수문모형(水文模型)(TOPMODEL)의 적용(適用))

  • Kim, Kyongha;Jeong, Yongho;Park, Jaehyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.2
    • /
    • pp.197-209
    • /
    • 2001
  • TOPMODEL, semi-distributed hydrological model, is frequently applied to predict the amount of discharge, main flow pathways and water quality in a forested catchment, especially in a spatial dimension. TOPMODEL is a kind of conceptual model, not physical one. The main concept of TOPMODEL is constituted by the topographic index and soil transmissivity. Two components can be used for predicting the surface and subsurface contributing area. This study is conducted for the validation of applicability of TOPMODEL at small forested catchments in Korea. The experimental area is located at Gwangneung forest operated by Korea Forest Research Institute, Gyeonggi-do near Seoul metropolitan. Two study catchments in this area have been working since 1979 ; one is the natural mature deciduous forest(22.0 ha) about 80 years old and the other is the planted young coniferous forest(13.6 ha) about 22 years old. The data collected during the two events in July 1995 and June 2000 at the mature deciduous forest and the three events in July 1995 and 1999, August 2000 at the young coniferous forest were used as the observed data set, respectively. The topographic index was calculated using $10m{\times}10m$ resolution raster digital elevation map(DEM). The distribution of the topographic index ranged from 2.6 to 11.1 at the deciduous and 2.7 to 16.0 at the coniferous catchment. The result of the optimization using the forecasting efficiency as the objective function showed that the model parameter, m and the mean catchment value of surface saturated transmissivity, $lnT_0$ had a high sensitivity. The values of the optimized parameters for m and InT_0 were 0.034 and 0.038; 8.672 and 9.475 at the deciduous and 0.031, 0.032 and 0.033; 5.969, 7.129 and 7.575 at the coniferous catchment, respectively. The forecasting efficiencies resulted from the simulation using the optimized parameter were comparatively high ; 0.958 and 0.909 at the deciduous and 0.825, 0.922 and 0.961 at the coniferous catchment. The observed and simulated hyeto-hydrograph shoed that the time of lag to peak coincided well. Though the total runoff and peakflow of some events showed a discrepancy between the observed and simulated output, TOPMODEL could overall predict a hydrologic output at the estimation error less than 10 %. Therefore, TOPMODEL is useful tool for the prediction of runoff at an ungaged forested catchment in Korea.

  • PDF