DOI QR코드

DOI QR Code

Hydro-Biogeochemical Approaches to Understanding of Water and Carbon Cycling in the Gwangneung Forest Catchment

수문생지화학적 접근을 통한 광릉 산림 유역의 물과 탄소 순환 이해

  • Kim, Su-Jin (Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University) ;
  • Lee, Dong-Ho (Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University) ;
  • Kim, Joon (Department of Atmospheric Sciences/Global Environmental Laboratory, Yonsei University) ;
  • Kim, Sung (Sustainable Water Resources Research Center/KICT)
  • 김수진 (연세대학교 대기과학과/지구환경연구소) ;
  • 이동호 (연세대학교 대기과학과/지구환경연구소) ;
  • 김준 (연세대학교 대기과학과/지구환경연구소) ;
  • 김승 (건설기술연구원/수자원의 지속적 확보기술개발 사업단)
  • Published : 2007.06.30

Abstract

The information on flowpath, storage, residence time, and interactions of water and carbon transport in a catchment is the prerequisite to the understanding and predicting of water and carbon cycling in the mountainous landscapes of Korea. In this paper, along with some up-to-date results, we present the principal methods that are currently used in HydroKorea and CarboKorea research to obtain such information. Various catchment hydrological processes have been examined on the basis of the water table fluctuations, the end-member mixing model, the cross correlation analysis, and cosmogenic radioactive isotope activity. In the Gwangneung catchment, the contribution of surface discharge was relatively large, and the changes in the amount, intensity and patterns of precipitation affected both the flowpath and the mean residence time of water. Particularly during the summer monsoon, changes in precipitation patterns and hydrological processes in the catchment influenced the carbon cycle such that the persistent precipitation increased the discharge of dissolved organic carbon (DOC) concentrated in the surface soil layer. The improved understanding of the hydrological processes presented in this report will enable a more realistic assessment of the effects of climate changes on the water resource management and on the carbon cycling in forest catchments.

한국 산악 경관에서의 물과 탄소의 순환을 이해하고 예측하기 위해서는 물과 탄소의 유역 내 이동 경로, 저류, 체류시간 및 상호작용에 대한 정보가 선행되어야 한다. 이와 관련하여 본 논문에서는 HydroKorea 및 CarboKorea 연구에서 사용하고 있는 연구 방법들과 현재까지의 주요 결과를 소개한다. 유역 내 다양한 수문순환 과정을 이해하기 위해 지하수위 변동, end-member mixing model, 교차상관 분석, 대기 기원의 천연방사성 동위원소를 이용하였다. 광릉 산림 유역에서는 지표유출의 기여도가 상대적으로 높았고, 강수량과 강수강도 및 패턴의 변화가 물의 유출경로와 체류 시간에 영향을 주었다. 특히, 몬순으로 인한 강수형태와 유역 내 수문과정의 변화가 탄소 순환에 영향을 미쳤는데, 지속적인 강우의 유입이 산림토양의 표층에 분포하는 고농도의 용존유기탄소의 유출을 증가시켰다. 본 연구를 통하여 시도된 수문순환과정에 대한 정량적인 규명은 기후 변화가 수자원 관리와 산림유역 탄소순환에 미치는 영향을 예측하기 위한 과학적 방법론을 확립하는데 기여할 것으로 기대된다.

Keywords

References

  1. Anderson, M. G. and T. P. Burt, 1991: Process Studies in Hillslope Hydrology. John Wiley and Sons, 539pp
  2. Betson, R. P., 1964: What is watershed runoff? Journal of Geophysical Research 69, 1541-1551 https://doi.org/10.1029/JZ069i008p01541
  3. Choi, I. H., N. C. Woo, S. J. Kim, and J. Kim, 2007: Estimation of the groundwater recharge rate at a headwater catchment in Gwangneung, Korea. Korean Journal of Agricultural and Forestry Meteorology, this issue https://doi.org/10.5532/KJAFM.2007.9.2.075
  4. Christophersen, N., C. Neal, R. P. Hooper, R. D. Vogt, and S. Andersen, 1990: Modeling streamwater chemistry as a mixture of soilwater end-members - a step towards second-generation acidification models. Journal of Hydrology 116, 307-320 https://doi.org/10.1016/0022-1694(90)90130-P
  5. Dawson, H. J., F. C. Ugolini, B. F. Hrutfiord, and J. Zachara, 1975: Role of soluble organics in the soil processes of a podzol, Central Cascades, Washington. Soil Science 126, 290-296
  6. Edwards, M., M. M. Bejamin, and J. N. Ryan, 1996: Role of organic acidity in sorption of natural organic matter (NOM) to oxide surfaces. Colloid Surfaces A 107, 297-307 https://doi.org/10.1016/0927-7757(95)03371-8
  7. Elsenbeer, H., D. Lorieri, and M. Bonell, 1995: Mixing model approaches to estimate storm flow sources in an overland flow-dominated tropical rain forest catchment. Water Resources Research 31, 2267-2278 https://doi.org/10.1029/95WR01651
  8. Gu, B., J. Schimitt, Z. Chen, L. Liang, and J. F. McCarthy, 1994: Adsorption and desorption of natural organic matter on iron oxides: Mechanisms and models. Environmental Science & Technology 28, 38-46 https://doi.org/10.1021/es00050a007
  9. Guggenberger, G., W. Zech, and H. -R., Schulten, 1994: Formation and mobilization pathways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions. Organic Geochemistry 21(1), 51-66 https://doi.org/10.1016/0146-6380(94)90087-6
  10. Herbert, B. E., and P. M. Bertsch, 1995: Characterization of dissolved and colloidal organic matter in soil solution. Carbon forms and functions in forest soils, J. M. Kelly and W. W. McFee (Eds), SSSA, Madison, WI, 63-88
  11. Hooper, R. P., N. Christophersen, and N. E. Peters, 1990: Modeling streamwater chemistry as a mixture of soilwater end-members-an application to the Panola Mountain Catchment, Georgia, U.S.A. Journal of Hydrology 116, 321-343 https://doi.org/10.1016/0022-1694(90)90131-G
  12. Horton, R. E., 1933: The role of infiltration in the hydrologic cycle. American Geophysical Union. Transaction 14, 446-460 https://doi.org/10.1029/TR014i001p00446
  13. Jardine, P. M., N. L. Weber, and J. F. McCarthy, 1989: Mechanism of dissolved organic carbon adsorption on soil. Soil Science Society of America Journal 53, 1378-1385 https://doi.org/10.2136/sssaj1989.03615995005300050013x
  14. Kaiser, K., and W. Zech, 1998a: Soil dissolved organic matter sorption as influenced by organic and sesquioxide coatings and sorbed sulfate. Soil Science Society of America Journal 62, 129-136 https://doi.org/10.2136/sssaj1998.03615995006200010017x
  15. Kaiser, K., and W. Zech, 1998b: Rates of dissolved organic matter release and sorption in forest soils. Soil Science 62, 129-136 https://doi.org/10.2136/sssaj1998.03615995006200010017x
  16. Kalbitz, K., S. Solinger, J. -H. Park, B. Michalzik, and E. Matzner, 2000: Controls on the dynamics of dissolved organic matter in soils: a review. Soil Science 165, 277-304 https://doi.org/10.1097/00010694-200004000-00001
  17. Katsuyama, M., N. Ohte, and S. Kobashi, 2001: A threecomponent end-member analysis of streamwater hydrochemistry in a small Japanese forested headwater catchment. Hydrological Processes 15, 249-260 https://doi.org/10.1002/hyp.155
  18. Kawasaki, M., N. Ohte, and M. Katsuyama, 2005: Biogeochemical and hydrological controls on carbon export from a forested catchment in central Japan. Ecological Research 20, 347-358 https://doi.org/10.1007/s11284-005-0050-0
  19. Kim, E., S. Kang, B. Lee, K. Kim, and J. Kim, 2007: Application and parameterization of RHESSys for integrating the eco-hydrological processes in the Gwangneung small watershed. Korean Journal of Agricultural and Forestry Meteorology, this issue https://doi.org/10.5532/KJAFM.2007.9.2.121
  20. Kim, S. J., 2003: Hydro-Biogeochemical Study on the Sulfur Dynamics in a Temperature Forest Catchment. Ph. D. Dissertation. Kyoto University
  21. Kim, S. J., N. Ohte., M. Kawasaki., M. Katsuyama., N. Tokuchi, and S. Hobara, 2003: Interactive responses of dissolved sulfate and nitrate to disturbance associated with pine wilt disease in a temperate forest. Soil Science and Plant Nutrition 49, 539-550 https://doi.org/10.1080/00380768.2003.10410043
  22. Kim, S. J., and J. Kim, 2006: How to evaluate the DOC and POC discharge from forest ecosystem during monsoon? USA PUB Workshop, CUASHI
  23. Kim, S., H. Lee, N. C. Woo, and J. Kim, 2007: Soil moisture monitoring in a steep relief. Hydrological Processes, in press, 10.1002/hyp.6508
  24. Kim, J., D. Lee, J. Hong, S. Kang, S. J. Kim, S. K. Moon, H. H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B. Lee, B. L. Lee, and S. Kim, 2006: HydroKorea and CarboKorea: cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecological Research 21, 881-889 https://doi.org/10.1007/s11284-006-0055-3
  25. Kirkby, M.J., 1978: Hillslope Hydrology. John Wiley and Sons, 389pp
  26. Kosugi, K., 1994: Three-parameter lognormal distribution model for soil water retain. Water Resources Research 30, 891-901 https://doi.org/10.1029/93WR02931
  27. Kosugi, K., 1996: Lognormal distribution model of unsaturated soil hydraulic properties. Water Resources Research 32, 2697-2703 https://doi.org/10.1029/96WR01776
  28. Lim, J. H., J. H. Shin, G. Z. Jin, J. H. Chun, and J. S. Oh, 2003: Forest stand structure, site characteristics and carbon budget of the Kwangneung natural forest in Korea. Korean Journal of Agricultural and Forestry Meteorology 5, 101-109
  29. Ludwig, W., J. L. Probst, and S. Kempe, 1996: Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 10, 23-41 https://doi.org/10.1029/95GB02925
  30. Matsutani, J., T. Tanaka, and M. Tsujimura, 1993: Residence times of soil, ground, and discharge waters in a mountainous headwater basin, central Japan, traced by tritium. Tracers in Hydrology, N. E. Peters, E. Hoehn, Ch. Leibundgut, N. Tase., and D. E. Walling (Eds.), IAHS Publication No. 215, 57-64
  31. McGlynn, B. L., and J. J. McDonnell, 2003: Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Research 39(4), 1090, doi:10.1029/2002WR001525
  32. Meybeck, M., 1982: Carbon, nitrogen, and phosphorus transport by the world rivers. American Journal of Science 282, 401-450 https://doi.org/10.2475/ajs.282.4.401
  33. Michel, R. L., and D. L. Naftz, 1995: Use of sulfur-35 and tritium to study runoff from an alpine glacier, Wind River Range, Wyoming. Biogeochemistry of Seasonally Snow-Covered Catchments, K. A. Tonnessen, M. W. Williams, M., Tranter, (Eds.), International Association of Hydrological Sciences. Boulder, CO. Publication No. 228, 441-443
  34. Moon, S. -K., N. C. Woo, and K. S. Lee, 2004: Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. Journal of Hydrology 292, 198-209, doi:10.1016/j.jhydrol.2003.12.030
  35. Moon, S. -K., Y. Ryu, D. Lee, and J. Kim, 2007: Quantifying the Spatial Heterogeneity of the Land Surface Parameters at the Two Contrasting KoFlux Sites by Semivariogram. Korean Journal of Agricultural and Forestry Meteorology, this issue https://doi.org/10.5532/KJAFM.2007.9.2.140
  36. Moore, T. R., W. Desouza, and J. F. Koprivnijak, 1992: Controls on the sorption of dissolved organic carbon in soils. Soil Science 154, 120-129 https://doi.org/10.1097/00010694-199208000-00005
  37. Nodvin, S. C., C. T. Driscoll, and G. E. Likens, 1986: Simple partitioning of anions and dissolved organic carbon in a forest soil. Soil Science 142, 27-35 https://doi.org/10.1097/00010694-198607000-00005
  38. Perakis, S. S., and L. O. Hedin, 2002: Nitrogen loss from unpolluted South American forest mainly via dissolved organic compounds. Science 415, 416-419
  39. Pinder, G. F., and J. F. Jones, 1969: Determination of the groundwater component of peak discharge from the chemistry of total runoff water. Water Resources Research 5(2), 438-445 https://doi.org/10.1029/WR005i002p00438
  40. Prentice, I. C., G. D. Farquhar, M. J. R. Fasham, M. L. Goulden, M. Heimann, V. J. Jaramillo, H. S. Kheshgi, C. Le Quere, R. J. Scholes, and D. W. R. Wallace, 2001: The carbon cycle and atmospheric carbon dioxide, in Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (Eds), Cambridge University Press, 190pp
  41. Sato, A., and M. Seto, 1999: Relationship between rate of carbon dioxide evolution, microbial biomass carbon, and amount of dissolved organic carbon as affected by temperature and water content of a forest and an arable soil. Communications in Soil Science and Plant Analysis 30, 2593-2605 https://doi.org/10.1080/00103629909370399
  42. Schlesinger, W. H., and J. M. Melack 1981: Transport of organic carbon in the world's rivers. Tellus 33, 172-181 https://doi.org/10.1111/j.2153-3490.1981.tb01742.x
  43. Schulze, E.-D., 2006: Biological control of the terrestrial carbon sink. Biogeosciences 3, 147-166 https://doi.org/10.5194/bg-3-147-2006
  44. Shanley, J. B., E. Pendall, C. Kendall, L. R. Stevens, R. L. Nichel, P. J. Phillips, R. M. Forester, D. L. Naftz, B. Liu, L. Stern, B. B. Wolfe, C. P. Chamerlain, S. W. Leavitt, T. H. E. Heaton, B. Mayer, L. D. Cecil, W. B. Lyons, B. G. Katz, J. L. Betancourt, D. M. McKnight, J. D. Blum, T. W. D. Edwards, H. R. House, E. Ito, R. O. Aravena, and J. F. Whelan, 1998: Isotope as indicators of environmental change. Isotope tracers in catchment hydrology, C. Kendall and J. J. McDonnell (Eds.), Elsevier, 761-816
  45. Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, 666 pp
  46. Sueker, J. K., J. T. Turk, and R. L. Michel, 1999: Use of cosmogenic $^{35}S$ for comparing ages of water from three alpine-subalpine basins in the Colorado Front Range. Geomorphology 27, 61-74 https://doi.org/10.1016/S0169-555X(98)00090-7
  47. Suzuki, M., 1980: Evapotranspiration from a small catchment in hilly mountain (I) Seasonal variations in evapotranspiration, rainfall interception and transpiration. Journal of Japanese Forest Society 62, 46-53
  48. Tipping, E., and C. Woof, 1990: Humic substances in acid organic soils: Modeling their release to the soil solution in terms of humic charge. Journal of Soil Science 41, 573-585 https://doi.org/10.1111/j.1365-2389.1990.tb00227.x
  49. Wagai, R., and P. Sollins, 2002: Biodegradation and regeneration of water-soluble organic carbon in a forest soil: leaching column study. Biology and Fertility of Soils 35, 18-26 https://doi.org/10.1007/s00374-001-0434-4
  50. Warnken, K. W., and P. H. Santschi, 2004: Giogeochemical behavior of oganic carbon in the Trinity River downstream of a large reservoir lake in Texas, USA. Science of the Total Environment 329, 131-144 https://doi.org/10.1016/j.scitotenv.2004.02.017

Cited by

  1. Development of 'Carbon Footprint' Concept and Its Utilization Prospects in the Agricultural and Forestry Sector vol.17, pp.4, 2015, https://doi.org/10.5532/KJAFM.2015.17.4.358