Browse > Article
http://dx.doi.org/10.3741/JKWRA.2011.44.1.51

Development of Continuous Rainfall-Runoff Model for Flood Forecasting on the Large-Scale Basin  

Bae, Deg-Hyo (Dept. of Civil and Environmental Engrg., Sejong Univ.)
Lee, Byong-Ju (Hydrometeorological Resources Research Team, Applied Meteorology Research Division, National Institute of meteorological Research)
Publication Information
Journal of Korea Water Resources Association / v.44, no.1, 2011 , pp. 51-64 More about this Journal
Abstract
The objective of this study is to develop a continuous rainfall-runoff model for flood prediction on a large-scale basin. For this study, the hourly surface runoff estimation method based on the variable retention parameter and runoff curve number is developed. This model is composed that the soil moisture to continuous rainfall can be simulated with applying the hydrologic components to the continuous equation for soil moisture. The runoff can be simulated by linking the hydrologic components with the storage function model continuously. The runoff simulation to large basins can be performed by using channel storage function model. Nakdong river basin is selected as the study area. The model accuracy is evaluated at the 8 measurement sites during flood season in 2006 (calibration period) and 2007~2008 (verification period). The calibrated model simulations are well fitted to the observations. Nash and Sutcliffe model efficiencies in the calibration and verification periods exist in the range of 0.81 to 0.95 and 0.70 to 0.94, respectively. The behavior of soil moisture depending on the rainfall and the annual loadings of simulated hydrologic components are rational. From this results, continuous rainfall-runoff model developed in this study can be used to predict the discharge on large basins.
Keywords
flood prediction; continuous rainfall-runoff model; storage function model; Nakdong river;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Soil Conservation Service (1972). National Engineering Handbook : section 4-Hydrology. SCS.
2 Sugawara, M. (1974). On natural disasters-some thoughts of a Japanese, unpublished manuscript.
3 Thornthwaite, C.W. (1948). “An approach toward a rational classification of climate.” Geographical Review, Vol. 38, pp. 55-94.   DOI
4 Van Der Knijff, J., and De Roo, A. (2008). LISFLOODdistributed water balance and flood simulation model, User Manual. EUR 22166 EN2, JRC Scientific and Technical Reports, p. 109.
5 Venetis, C. (1969). “A study of the recession of unconfined aquifers.” Bulletin of the International Association of Scientific Hydrology, Vol. 14. No. 4. pp. 119-125.   DOI   ScienceOn
6 Burnash, R., Ferral, R., and McGuire, R. (1973). “A Generalized Streamflow Simulation System, Conceptual Modeling for Digital Computers.” California- Nevada River Forecast Center, Sacramento, CA.
7 Environment Canada, Ontario Ministry of Natural Resources, Schroeter, H.O. (1989). “Grand River Integrated Flood Forecasting System(GRIFFS) V1.0 Final Technical Report.” April 7, 1989.
8 Ishihara, Y., and Kobatake, S. (1979). Runoff Model for Flood Forecasting, Bull. DPRI, Kyoto University, Vol. 29, pp. 27-43.
9 Kimura, T. (1961). The Flood runoff Analysis Method by the Storage Function Model. The Public Works Research Institute Ministry of Construction (in Japanese).
10 Neitsch, S.L., Arnord, J.G., Kiniry, J.R., and Williams, J.R., (2001). “Soil and Water Assessment Tool-Theoretical Documentation (version 2000).”
11 신철균, 조효섭, 정관수, 김재환(2004). “저류함수기법을 이용한 격자기반의 강우-유출 모형 개발.” 한국수자원학회논문집, 한국수자원학회, 제37권, 제11호, pp. 969-978.   과학기술학회마을   DOI
12 이병주, 배덕효, 정창삼(2003). “위성영상 피복분류에 대한 CN값 산정(II): -적용 및 검정-.” 한국수자원학회논문집, 한국수자원학회, 제36권, 제9호, pp. 999-1012.   과학기술학회마을   DOI
13 최윤석, 김경탁, 이진희(2008). “유한체적법을 이용한 격자기반의 분포형 강우-유출 모형 개발.” 한국수자원학회논문집, 한국수자원학회, 제41권, 제9호, pp. 895-905.   과학기술학회마을   DOI
14 최현상, 한건연(2004). “GIS와 불확실도 해석기법을 이용한 분포형 강우-유출 모형의 개발(I)-이론 및 모형의 개발 -.” 한국수자원학회논문집, 한국수자원학회, 제37권, 제4호, pp. 329-339.   과학기술학회마을   DOI
15 Arnold, J.G., Allen, P.M., and Bernhardt, G. (1993). “A comprehensive surface-groundwater flow model.” Journal of Hydrology, Vol. 142, pp. 47-69.   DOI
16 Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Willams, J.R. (1998). “Large area hydrologic modeling and assessment part I: model development.” Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 73-89.   DOI
17 김극수, 한건연, 김광섭(2009). “다방향 흐름 분배와 실시간 보정 알고리듬을 이용한 분포형 강우-유출 모형 개발(I)-이론-.” 한국수자원학회논문집, 한국수자원학회, 제42권, 제3호, pp. 247-257.   과학기술학회마을   DOI   ScienceOn
18 Schroeter, H. (1989). GAWSER training guide and reference manual. School of Engineering, University of Guelph, Ontario, Canada.
19 Ormsbee, L.E., and Khan, A.Q. (1989). “A parameteric model for steeply sloping forested watersheds.” Water Resources Research, Vol. 25, pp. 2053-2065.   DOI
20 Sangrey, D.A., Harrop-Williams, K.O., and Klaiber, J.A. (1984). “Predicting ground-water response to precipitation.” Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 7, pp. 957-975.   DOI
21 Sloan, P.G., and Moore, I.D. (1984). “Modeling subsurface stormflow on steeply sloping forested watersheds.” Water Resources Research, Vol. 20, No. 12, pp. 1815-1822.   DOI
22 Sloan, P.G., Morre, I.D., Coltharp, G.B., and Eigel, J.D.(1983). Modeling surface and subsurface stormflow on steeply-sloping forested watersheds. Water Resources Institute Report 142. University of Kentucky, Lexington.
23 Smedema, L.K., and Rycroft, D.W. (1983). Landdrainage-planning and design of agricultural drainage systems, Cornell University Press, Ithica, N.Y.
24 김성준(1998). “격자기반의 운동파 강우유출모형 개발(I).” 한국수자원학회논문집, 한국수자원학회, 제31권, 제3호, pp. 303-308.   과학기술학회마을
25 박진혁, 허영택(2010). “GIS기반 K-DRUM을 이용한 금강권 대유역 홍수유출 적용.” 한국지형공간정보학회지, 한국지형공간정보학회, 제18권, 제1호, pp. 11-20.   과학기술학회마을
26 배덕효, 이병주, 정일원(2003). “위성영상 피복분류에 대한 CN값 산정(I): -CN값 산정-.” 한국수자원학회논문집, 한국수자원학회, 제36권, 제9호, pp. 985-997.   과학기술학회마을   DOI
27 배덕효, 이병주, Georgakakos, K.P. (2009). “앙상블 칼만 필터를 연계한 추계학적 연속형 저류함수모형(I)-모형 개발 -.” 한국수자원학회논문집, 한국수자원학회, 제42권, 제11호, pp. 953-961.   DOI   ScienceOn