DOI QR코드

DOI QR Code

Development of Continuous Rainfall-Runoff Model for Flood Forecasting on the Large-Scale Basin

대유역 홍수예측을 위한 연속형 강우-유출모형 개발

  • Bae, Deg-Hyo (Dept. of Civil and Environmental Engrg., Sejong Univ.) ;
  • Lee, Byong-Ju (Hydrometeorological Resources Research Team, Applied Meteorology Research Division, National Institute of meteorological Research)
  • 배덕효 (세종대학교 물자원연구소 토목환경공학과) ;
  • 이병주 (국립기상연구소 응용기상연구과 수문자원연구팀)
  • Received : 2010.09.13
  • Accepted : 2010.01.03
  • Published : 2011.01.31

Abstract

The objective of this study is to develop a continuous rainfall-runoff model for flood prediction on a large-scale basin. For this study, the hourly surface runoff estimation method based on the variable retention parameter and runoff curve number is developed. This model is composed that the soil moisture to continuous rainfall can be simulated with applying the hydrologic components to the continuous equation for soil moisture. The runoff can be simulated by linking the hydrologic components with the storage function model continuously. The runoff simulation to large basins can be performed by using channel storage function model. Nakdong river basin is selected as the study area. The model accuracy is evaluated at the 8 measurement sites during flood season in 2006 (calibration period) and 2007~2008 (verification period). The calibrated model simulations are well fitted to the observations. Nash and Sutcliffe model efficiencies in the calibration and verification periods exist in the range of 0.81 to 0.95 and 0.70 to 0.94, respectively. The behavior of soil moisture depending on the rainfall and the annual loadings of simulated hydrologic components are rational. From this results, continuous rainfall-runoff model developed in this study can be used to predict the discharge on large basins.

본 연구에서는 대유역의 홍수모의가 가능한 연속형 강우-유출모형을 개발하고자 하는데 그 목적이 있다. 이를 위해 가변저류변수와 유출곡선지수를 기반으로 하는 시단위 지표유출량 산정방법을 개발하였으며 수문성분을 토양수분에 대한 연속방정식에 적용하여 연속적인 강우에 대한 토양수분 모의가 가능하도록 모형을 구성하였다. 또한 유출수문성분과 유역 저류함수모형을 연계하여 유역에 대한 연속적인 유출모의가 가능하도록 하였으며 하도 저류함수모형을 이용하여 대유역에 대한 유출모의가 가능하도록 모형을 개발하였다. 대상유역은 낙동강 유역을 채택하였으며 2006년(보정기간) 및 2007~2008년(검증기간)의 홍수기간 동안 본류와 지류에 위치한 8개 유량관측지점에 대해서 모형의 정확도 평가를 수행하였다. 모든 평가지점에서 모의유량이 관측유량과 유사한 결과를 보이며 보정기간과 검증기간의 모형효율성계수는 각각 0.81~0.95와 0.70~0.94 범위의 우수한 결과를 보이는 것으로 나타났다. 또한 강우에 대한 토양수분의 거동과 수문 성분 발생량에서도 합리적인 결과를 도출하는 것으로 확인되었다. 이상의 결과로부터 본 연구에서 개발된 연속형 강우-유출모형은 대유역의 홍수예측에 활용이 가능할 것으로 판단된다.

Keywords

References

  1. 김극수, 한건연, 김광섭(2009). “다방향 흐름 분배와 실시간 보정 알고리듬을 이용한 분포형 강우-유출 모형 개발(I)-이론-.” 한국수자원학회논문집, 한국수자원학회, 제42권, 제3호, pp. 247-257. https://doi.org/10.3741/JKWRA.2009.42.3.247
  2. 김성준(1998). “격자기반의 운동파 강우유출모형 개발(I).” 한국수자원학회논문집, 한국수자원학회, 제31권, 제3호, pp. 303-308.
  3. 박진혁, 허영택(2010). “GIS기반 K-DRUM을 이용한 금강권 대유역 홍수유출 적용.” 한국지형공간정보학회지, 한국지형공간정보학회, 제18권, 제1호, pp. 11-20.
  4. 배덕효, 이병주, 정일원(2003). “위성영상 피복분류에 대한 CN값 산정(I): -CN값 산정-.” 한국수자원학회논문집, 한국수자원학회, 제36권, 제9호, pp. 985-997. https://doi.org/10.3741/JKWRA.2003.36.6.985
  5. 배덕효, 이병주, Georgakakos, K.P. (2009). “앙상블 칼만 필터를 연계한 추계학적 연속형 저류함수모형(I)-모형 개발 -.” 한국수자원학회논문집, 한국수자원학회, 제42권, 제11호, pp. 953-961. https://doi.org/10.3741/JKWRA.2009.42.11.953
  6. 신철균, 조효섭, 정관수, 김재환(2004). “저류함수기법을 이용한 격자기반의 강우-유출 모형 개발.” 한국수자원학회논문집, 한국수자원학회, 제37권, 제11호, pp. 969-978. https://doi.org/10.3741/JKWRA.2004.37.11.969
  7. 이병주, 배덕효, 정창삼(2003). “위성영상 피복분류에 대한 CN값 산정(II): -적용 및 검정-.” 한국수자원학회논문집, 한국수자원학회, 제36권, 제9호, pp. 999-1012. https://doi.org/10.3741/JKWRA.2003.36.6.999
  8. 최윤석, 김경탁, 이진희(2008). “유한체적법을 이용한 격자기반의 분포형 강우-유출 모형 개발.” 한국수자원학회논문집, 한국수자원학회, 제41권, 제9호, pp. 895-905. https://doi.org/10.3741/JKWRA.2008.41.9.895
  9. 최현상, 한건연(2004). “GIS와 불확실도 해석기법을 이용한 분포형 강우-유출 모형의 개발(I)-이론 및 모형의 개발 -.” 한국수자원학회논문집, 한국수자원학회, 제37권, 제4호, pp. 329-339. https://doi.org/10.3741/JKWRA.2004.37.4.329
  10. Arnold, J.G., Allen, P.M., and Bernhardt, G. (1993). “A comprehensive surface-groundwater flow model.” Journal of Hydrology, Vol. 142, pp. 47-69. https://doi.org/10.1016/0022-1694(93)90004-S
  11. Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Willams, J.R. (1998). “Large area hydrologic modeling and assessment part I: model development.” Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  12. Burnash, R., Ferral, R., and McGuire, R. (1973). “A Generalized Streamflow Simulation System, Conceptual Modeling for Digital Computers.” California- Nevada River Forecast Center, Sacramento, CA.
  13. Environment Canada, Ontario Ministry of Natural Resources, Schroeter, H.O. (1989). “Grand River Integrated Flood Forecasting System(GRIFFS) V1.0 Final Technical Report.” April 7, 1989.
  14. Ishihara, Y., and Kobatake, S. (1979). Runoff Model for Flood Forecasting, Bull. DPRI, Kyoto University, Vol. 29, pp. 27-43.
  15. Kimura, T. (1961). The Flood runoff Analysis Method by the Storage Function Model. The Public Works Research Institute Ministry of Construction (in Japanese).
  16. Neitsch, S.L., Arnord, J.G., Kiniry, J.R., and Williams, J.R., (2001). “Soil and Water Assessment Tool-Theoretical Documentation (version 2000).”
  17. Ormsbee, L.E., and Khan, A.Q. (1989). “A parameteric model for steeply sloping forested watersheds.” Water Resources Research, Vol. 25, pp. 2053-2065. https://doi.org/10.1029/WR025i009p02053
  18. Sangrey, D.A., Harrop-Williams, K.O., and Klaiber, J.A. (1984). “Predicting ground-water response to precipitation.” Journal of Geotechnical Engineering, ASCE, Vol. 110, No. 7, pp. 957-975. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:7(957)
  19. Schroeter, H. (1989). GAWSER training guide and reference manual. School of Engineering, University of Guelph, Ontario, Canada.
  20. Sloan, P.G., and Moore, I.D. (1984). “Modeling subsurface stormflow on steeply sloping forested watersheds.” Water Resources Research, Vol. 20, No. 12, pp. 1815-1822. https://doi.org/10.1029/WR020i012p01815
  21. Sloan, P.G., Morre, I.D., Coltharp, G.B., and Eigel, J.D.(1983). Modeling surface and subsurface stormflow on steeply-sloping forested watersheds. Water Resources Institute Report 142. University of Kentucky, Lexington.
  22. Smedema, L.K., and Rycroft, D.W. (1983). Landdrainage-planning and design of agricultural drainage systems, Cornell University Press, Ithica, N.Y.
  23. Soil Conservation Service (1972). National Engineering Handbook : section 4-Hydrology. SCS.
  24. Sugawara, M. (1974). On natural disasters-some thoughts of a Japanese, unpublished manuscript.
  25. Thornthwaite, C.W. (1948). “An approach toward a rational classification of climate.” Geographical Review, Vol. 38, pp. 55-94. https://doi.org/10.2307/210739
  26. Van Der Knijff, J., and De Roo, A. (2008). LISFLOODdistributed water balance and flood simulation model, User Manual. EUR 22166 EN2, JRC Scientific and Technical Reports, p. 109.
  27. Venetis, C. (1969). “A study of the recession of unconfined aquifers.” Bulletin of the International Association of Scientific Hydrology, Vol. 14. No. 4. pp. 119-125. https://doi.org/10.1080/02626666909493759

Cited by

  1. Classification of GIS-based models according to natural hazard types vol.24, pp.2, 2016, https://doi.org/10.1007/s41324-016-0012-3
  2. Development of Realtime Dam's Hydrologic Variables Prediction Model using Observed Data Assimilation and Reservoir Operation Techniques vol.46, pp.7, 2013, https://doi.org/10.3741/JKWRA.2013.46.7.755
  3. Streamflow Forecast Model on Nakdong River Basin vol.44, pp.11, 2011, https://doi.org/10.3741/JKWRA.2011.44.11.853
  4. Assessment of Dual-Polarization Radar for Flood Forecasting vol.48, pp.4, 2015, https://doi.org/10.3741/JKWRA.2015.48.4.257
  5. Assessment of Radar AWS Rainrate for Streamflow Simulation on Ungauged Basin vol.44, pp.9, 2011, https://doi.org/10.3741/JKWRA.2011.44.9.721
  6. Determination and Evaluation of Optimal Parameters in Storage Function Method using SCE-UA vol.45, pp.11, 2012, https://doi.org/10.3741/JKWRA.2012.45.11.1169
  7. Development of a precipitation–area curve for warning criteria of short-duration flash flood vol.18, pp.1, 2018, https://doi.org/10.5194/nhess-18-171-2018