• 제목/요약/키워드: Soil Fungal Community

검색결과 49건 처리시간 0.028초

천궁 초작과 연작 재배지의 토양특성이 토양 곰팡이 군집에 미치는 영향 (Effect of Soil Properties on Soil Fungal Community in First and Continuous Cultivation Fields of Cnidium officinale Makino)

  • 김기윤;한경민;김현준;김충우;전권석;정충렬
    • 한국약용작물학회지
    • /
    • 제28권3호
    • /
    • pp.209-220
    • /
    • 2020
  • Background: This study investigated the effects of soil properties on the soil fungal community in first and continuous cultivation areas of Cnidium officinale Makino. Methods and Results: The soil fungal community was analyzed for relative abundance and principal coordinate analysis (PCoA) was conducted using Illumina MiSeq sequencing. The correlation between the soil chemical properties and the soil fungal community was assessed with distance-based linear models (DISTLM). The soil fungal community showed distinct clusters consisting in the continuous cultivation area of C. officinale Makino. PCoA and DISTLM indicated that soil pH, calcium, and available P2O5 significantly affected the soil fungal community in the cultivation area of C. officinale Makino. In addition, considering 5 different pathogenic fungi the relative abundance of Fusarium in the continuous cultivation area was significantly higher compared to that in the first cultivation area of C. officinale Makino. Conclusions: This study is important because it has determinined the effects of soil properties on the soil fungal community in both first and continuous cultivation areas of C. officinale Makino. Moreover, these results will be helpful to investigate the cause of continuous cropping obstacle in C. officinale Makino by examining the changes of soil fungal community.

Effect of Bacterial Wilt on Fungal Community Composition in Rhizosphere Soil of Tobaccos in Tropical Yunnan

  • Zheng, Yuanxian;Wang, Jiming;Zhao, Wenlong;Cai, Xianjie;Xu, Yinlian;Chen, Xiaolong;Yang, Min;Huang, Feiyan;Yu, Lei;He, Yuansheng
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.203-211
    • /
    • 2022
  • Bacterial wilt, which is a major soil-borne disease with widespread occurrence, poses a severe danger in the field of tobacco production. However, there is very limited knowledge on bacterial wilt-induced microecological changes in the tobacco root system and on the interaction between Ralstonia solanacearum and fungal communities in the rhizosphere soil. Thus, in this study, changes in fungal communities in the rhizosphere soil of tobaccos with bacterial wilt were studied by 18S rRNA gene sequencing. The community composition of fungi in bacterial wilt-infected soil and healthy soil in two tobacco areas (Gengma and Boshang, Lincang City, Yunnan Province, China) was studied through the paired comparison method in July 2019. The results showed that there were significant differences in fungal community composition between the rhizosphere soil of diseased plants and healthy plants. The changes in the composition and diversity of fungal communities in the rhizosphere soil of tobaccos are vital characteristics of tobaccos with bacterial wilt, and the imbalance in the rhizosphere microecosystem of tobacco plants may further aggravate the disease.

Influence of Allyl Isothiocyanate on the Soil Microbial Community Structure and Composition during Pepper Cultivation

  • Gao, Jingxia;Pei, Hongxia;Xie, Hua
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.978-989
    • /
    • 2021
  • Allyl isothiocyanate (AITC), as a fumigant, plays an important role in soil control of nematodes, soil-borne pathogens, and weeds, but its effects on soil microorganisms are unclear. In this study, the effects of AITC on microbial diversity and community composition of Capsicum annuum L. soil were investigated through Illumina high-throughput sequencing. The results showed that microbial diversity and community structure were significantly influenced by AITC. AITC reduced the diversity of soil bacteria, stimulated the diversity of the soil fungal community, and significantly changed the structure of fungal community. AITC decreased the relative abundance of dominant bacteria Planctomycetes, Acinetobacter, Pseudodeganella, and RB41, but increased that of Lysobacter, Sphingomonas, Pseudomonas, Luteimonas, Pseudoxanthomonas, and Bacillus at the genera level, while for fungi, Trichoderma, Neurospora, and Lasiodiplodia decreased significantly and Aspergillus, Cladosporium, Fusarium, Penicillium, and Saccharomyces were higher than the control. The correlation analysis suggested cellulase had a significant correlation with fungal operational taxonomic units and there was a significant correlation between cellulase and fungal diversity, while catalase, cellulose, sucrase, and urease were the major contributors in the shift of the community structure. Our results will provide useful information for the use of AITC in the assessment of environmental and ecological security.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권8호
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.

Guild Patterns of Basidiomycetes Community Associated With Quercus mongolica in Mt. Jeombong, Republic of Korea

  • Oh, Seung-Yoon;Cho, Hae Jin;Eimes, John A.;Han, Sang-Kuk;Kim, Chang Sun;Lim, Young Woon
    • Mycobiology
    • /
    • 제46권1호
    • /
    • pp.13-23
    • /
    • 2018
  • Depending on the mode of nutrition exploitation, major fungal guilds are distinguished as ectomycorrhizal and saprotrophic fungi. It is generally known that diverse environmental factors influence fungal communities; however, it is unclear how fungal communities respond differently to environment factors depend on fungal guilds. In this study, we investigated basidiomycetes communities associated with Quercus mongolica using 454 pyrosequencing. We attempted to detect guild pattern (ectomycorrhizal or saprotrophic fungal communities) by comparing the influence of geography and source (root and surrounding soil). A total of 515 mOTUs were detected from root (321) and soil (394) of Q. mongolica at three sites of Mt. Jeombong in Inje County. We found that patterns of diversity and community structure were different depending on the guilds. In terms of alpha diversity, only ectomycorrhizal fungi showed significant differences between sources. In terms of community structure, however, geography significantly influenced the ectomycorrhizal community, while source appeared to have a greater influence on the saprotrophic community. Therefore, a guildbased view will help to elucidates novel features of the relationship between environmental factors and fungal communities.

Pyrosequencing and Taxonomic Composition of the Fungal Community from Soil of Tricholoma matsutake in Gyeongju

  • Jeong, Minji;Choi, Doo-Ho;Cheon, Woo-Jae;Kim, Jong-Guk
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.686-695
    • /
    • 2021
  • Tricholoma matsutake is an ectomycorrhizal fungus that has a symbiotic relationship with the root of Pinus densiflora. Soil microbial communities greatly affect the growth of T. matsutake, however, few studies have examined the characteristics of these communities. In the present study, we analyzed soil fungal communities from Gyeongju and Yeongdeok using metagenomic pyrosequencing to investigate differences in fungal species diversity, richness, and taxonomic composition between the soil under T. matsutake fruiting bodies (Sample 2) and soil where the fairy ring of T. matsutake was no longer present (Sample 1). The same spot was investigated three times at intervals of four months to observe changes in the community. In the samples from Yeongdeok, the number of valid reads was lower than that at Gyeongju. The operational taxonomic units of most Sample 2 groups were less than those of Sample 1 groups, indicating that fungal diversity was low in the T. matsutake-dominant soil. The soil under the T. matsutake fruiting bodies was dominated by more than 51% T. matsutake. From fall to the following spring, the ratio of T. matsutake decreased. Basidiomycota was the dominant phylum in most samples. G-F1-2, G-F2-2, and Y-F1-2 had the genera Tricholoma, Umbelopsis, Oidiodendron, Sagenomella, Cladophialophora, and Phialocephala in common. G-F1-1, G-F2-1, and Y-F1-1 had 10 genera including Umbelopsis and Sagenomella in common. From fall to the following spring, the amount of phyla Basidiomycota and Mucoromycota gradually decreased but that of phylum Ascomycota increased. We suggest that the genus Umbelopsis is positively related to T. matsutake.

Salinity affects microbial community structure in saemangeum reclaimed land

  • Kim, Kiyoon;Samaddar, Sandipan;Ahmed, Shamim;Roy, Choudhury Aritra;Sa, Tongmin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.364-364
    • /
    • 2017
  • Saemangeum reclaimed land is a part of Saemangeum Development Project. Most of the persistent problems of Saemangeum reclaimed land remain to be related to soil salinity. Soil salinity is a major abiotic factor related to microbial community structure and also fungi have been reported to be more sensitive to salinity stress than bacteria. The aim of this study was conducted to investigate the effect of soil salinity levels on the microbial communities in Saemangeum reclaimed land using 454 pyrosequencing analysis. Soil samples was collected from 12 sites of in Saemangeum reclaimed land. For pyrosequencing, 27F/518R (bacteria) and ITS3/ITS4 (fungi) primers were used containing the Roche 454 pyrosequencing adaptor-key-linker (underlined) and unique barcodes (X). Pyrosequencing was performed by Chun's Lab (Seoul, Korea) using the standard shotgun sequencing reagents and a 454 GS FLX Titanium sequencing System (Roche, Inc.). In the soil samples, Proteobacteria (bacteria) and Ascomycota (fungi) shows the highest relative abundance in all the soil sample sites. Proteobacteria, Bacteroidetes, Plantomycetes, Gemmatimonadetes and Parcubacteria were shown to have significantly higher abundance in high salinity level soils than low salinity level soils, while Acidobacteria and Nitrospirae has significantly higher relative abundance in low salinity level soils. The abundance of fungal, Ascomycota has the highest relative abundance in soil samples, followed by Basidiomycota, Chlorophyta, Zygomycota and Chytridiomycota. Basidiomycota, Zygomycota, Glomeromycota and Cerozoa were show significantly higher relative abundance in low salinity level soils. The principal coordinate analysis (PCoA) and correlation analysis shown to salinity-related soil parameters such as ECe, Na+, SAR and EPS were affected to bacterial and fungal community structure. Proteobacteria, Bacteroidetes, Plantomycetes exhibited significantly positive correlation with soil salinity, while Acidobacteria exhibited significantly negative correlation. In the case of fungal community, Basidiomycota and Zygomycota were seen show significantly negative correlation with salinity related soil parameters. These results suggest that provide understanding effect of soil salinity on microbial community structure and correlation of microbial community with soil parameters in Saemangeum reclaimed land.

  • PDF

Influence of Companion Planting on Microbial Compositions and Their Symbiotic Network in Pepper Continuous Cropping Soil

  • Jingxia Gao;Fengbao Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권6호
    • /
    • pp.760-770
    • /
    • 2023
  • Continuous cropping obstacles have become a serious factor restricting sustainable development in modern agriculture, while companion planting is one of the most common and effective methods for solving this problem. Here, we monitored the effects of companion planting on soil fertility and the microbial community distribution pattern in pepper monoculture and companion plantings. Soil microbial communities were analyzed using high-throughput sequencing technology. Companion plants included garlic (T1), oat (T2), cabbage (T3), celery (T4), and white clover (T5). The results showed that compared with the monoculture system, companion planting significantly increased the activities of soil urease (except for T5) and sucrase, but decreased catalase activity. In addition, T2 significantly improved microbial diversity (Shannon index) while T1 resulted in a decrease of bacterial OTUs and an increase of fungal OTUs. Companion planting also significantly changed soil microbial community structures and compositions. Correlation analysis showed that soil enzyme activities were closely correlated with bacterial and fungal community structures. Moreover, the companion system weakened the complexity of microbial networks. These findings indicated that companion plants can provide nutrition to microbes and weaken the competition among them, which offers a theoretical basis and data for further research into methods for reducing continuous cropping obstacles in agriculture.

우리나라 비슬산군립공원 진달래나무(Rhododendron mucronulatum)와 관련된 토양 진균 군집의 pyrosequencing 분석 (Analysis of Soil Fungal Community Related to Rhododendron mucronulatum in Biseul Mountain County Park, South Korea)

  • 정민지;김동현;최두호;이인선;김종국
    • 생명과학회지
    • /
    • 제31권4호
    • /
    • pp.377-384
    • /
    • 2021
  • 진달래(Rhododendron mucronulatum)는 우리나라에서 어렵지 않게 볼 수 있는 개화식물로 꽃이 아름다워 관상목으로 이용되고 있고 생태학적, 약리적으로 잠재력이 있는 중요한 산림자원이다. 우리나라의 대표적 진달래나무군락지인 비슬산군립공원에서 진달래나무 아래의 토양을 채집하여 그 진균 군집의 특성을 조사하였다. 위치와 계절에 따른 진균 군집의 차이를 확인하기 위하여 토양 샘플은 총 3개의 위치에서 2월과 8월에 각각 한번씩 채집하였다. Pyrosequencing을 통해 총 454,157개의 서열을 얻을 수 있었다. 첫번째 채집포인트에서 얻은 샘플의 진균 군집이 6개 샘플 중 가장 종 풍부도가 높았고 가장 다양한 진균들로 구성되어 있음을 확인하였다. 분류 단위 별 분석으로는, Basidiomycota, Ascomycota, Mortierellomycota가 대표적인 문(phylum)으로 나타났으며, Agaricales_f, Mortierellaceae, Clavariaceae가 주요한 과(family)인 것으로 분석되었다. Mortierella 속(genus)은 모든 샘플중에서 가장 우점한 속이었다. 또한 총 진달래와 관련이 있는 것으로 추정되는 19개의 속이 확인되었다. 8월에 채집한 샘플에서 위치에 따라 각각 109개, 111개, 112개의 특이적인 속이 발견되었고, 2월의 샘플과 비교했을 때 2월의 샘플에는 존재하지 않는 28개의 공통된 속이 발견되었다. 이 연구는 추후 진달래나무에 특이적인 진균의 새로운 종을 규명하거나 토양 진균류와 식물의 상호작용을 규명하는 기초자료로 활용될 수 있다.

석회암 지대 참나무속 식물에 공생하는 외생균근균의 군집구조 (Community Structure of Ectomycorrhizal Fungal communities Colonizing Quercus spp. in Limestone Areas of Korea)

  • 이종철;박혁;엄안흠
    • 한국균학회지
    • /
    • 제49권1호
    • /
    • pp.109-118
    • /
    • 2021
  • 국내 석회암지대에 서식하는 참나무류의 뿌리에서 외생균근균(ectomycorrhizal fungi, ECM)의 다양성을 분석하였다. 분자분석을 통해 참나무류에 공생하고 있는 45속의 ECM을 확인하였다. ECM의 종 다양성 지수는 pH, 칼슘 농도, 유효인산 농도가 증가할수록 감소하는 경향을 보였고, 전질소 함량과 유기물 함량이 증가할수록 증가하는 경향을 보였다. 군집분석 결과 석회토양의 특징인 pH와 칼슘 농도와 양의 상관관계를 갖는 ECM은 Sebacina, Tomentella, Tuber, Densospora, Inocybe, Suillus, Piloderma속에 속하는 균주들 이였으며, 이들은 토양 안정성이 약화된 석회암지대의 생태복원에 활용될 수 있을 것으로 판단된다.