Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.4.377

Analysis of Soil Fungal Community Related to Rhododendron mucronulatum in Biseul Mountain County Park, South Korea  

Jeong, Min-Ji (School of Life Science, Kyungpook National University)
Kim, Dong-Hyun (School of Life Science, Kyungpook National University)
Choi, Doo-Ho (School of Life Science, Kyungpook National University)
Lee, In-Seon (Department of Food Science and Technology, Keimyung University)
Kim, Jong-Guk (School of Life Science, Kyungpook National University)
Publication Information
Journal of Life Science / v.31, no.4, 2021 , pp. 377-384 More about this Journal
Abstract
Researching the soil fungal community is important to understand the interaction between fungi and living plants. However, too few studies have examined the soil fungal community and their interactions with plants. Rhododendron mucronulatum, commonly known as Korean rosebay, is an important forest resource that has aesthetic, ecological, and potential pharmacological values. We used a pyrosequencing method to analyze the characteristics of fungal communities from R. mucronulatum soil samples from Biseul mountain county park, which is one of the famous places for large R. mucronulatum colonies in South Korea. We collected soil core samples in February and August at three sites in the Biseul Mountain County Park, taking into consideration the regional and seasonal conditions. We obtained 454,157 validated reads after pyrosequencing all six samples. The fungal communities from the first observation spot in August had the richest species diversity among the samples. Basidiomycota, Ascomycota, and Mortierellomycota were major phyla in the samples. Agaricales_f, Mortierellaceae, and Clavariaceae were major families in the samples. The genus Mortierella was the most dominant in all six samples. Overall, 19 genera could be associated with R. mucronulatum. Sample 1 had 109 genera in sample 1, sample 2 had 111 genera, and sample 3 had 112 genera that were uniquely identified. The samples collected in August had 28 identified genera, that existed only in summer samples, indicating a weather effect. This study can be used as basic research to understand the relationship between soil fungi and plants.
Keywords
Biseul mountain county park; fungal community; next-generation sequencing; pyrosequencing; Rhododendron mucronulatum;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Peay, K. G., Baraloto, C. and Fine, P. V. 2013. Strong coupling of plant and fungal community structure across western Amazonian rainforests. ISME J. 7, 1852-1861.   DOI
2 Vandenkoornhuyse, P., Sarjala, S. L., Leyval, C., Straczek, J. and Young, J. P. 2002. Extensive fungal diversity in plant roots. Science 295, 2051.   DOI
3 Baptista, P, Reis, F, Pereira, E, Tavares, R. M., Santos, P. M., Richard, F, Selosse, M. A. and Lino-Neto, T. 2015. Soil DNA pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards. Environ. Microbiol. Rep. 7, 946-954.   DOI
4 Bender, S. F., Plantenga, F., Neftel, A., Jocher, M., Oberholzer, H. R., Kohl, L., Giles, M., Daniell, T. J. and Van Der Heijden, M. G. 2014. Symbiotic relationships between soil fungi and plants reduce N2O emissions from soil. ISME J. 8, 1336-1345.   DOI
5 Bolger, A. M., Lohse, M. and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.   DOI
6 Buee, M., Reich, M., Murat, C., Morin, E. and Nilsson, R. H. 2009. 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 184, 449-456.   DOI
7 Cho, Y. J., Ju, I. S., Chun, S. S., An, B. J., Kim, J. H., Kim, M. U. and Kwon, O. J. 2008. Screening of biological activities of extracts from Rhododendron mucronulatum Turcz. flowers. J. Kor. Soc. Food. Sci. Nutr. 37, 276-281.   DOI
8 Badali, H., Gueidan, C., Najafzadeh, M. J., Bonifaz, A., van den Ende, A. G. and De Hoog, G. S. 2008. Biodiversity of the genus Cladophialophora. Stud. Mycol. 61, 175-191.   DOI
9 Zehr, J. P., Jenkins, B. D., Short, S. M., and Steward, G. F. 2003. Nitrogenase gen diversity and microbial community structure: a cross-system comparison. Environ. Microbiol. 5, 539-554.   DOI
10 Choi, D. H., Jeong, M. J., Kwon, H. J., Kim, M. G., Kim, D. H., Kim, Y. G. and Kim, J. G. 2020. Metagenomic Analysis of bacterial communities in Rhododendron mucronulatum in Biseul mountain county park, Daegu, Korea. J. Life Sci. 30, 32-39.   DOI
11 Birkebak, J. M., Mayor, J. R., Ryberg, K. M. and Matheny, P. B. 2013. A systematic, morphological and ecological overview of the Clavariaceae (Agaricales). Mycologia 105, 896-911.   DOI
12 Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669-685.   DOI
13 Hambleton, S., Nickerson, N. L. and Seifert, K. A. 2005. Leohumicola, a new genus of heat-resistant hyphomycetes. Stud. Mycol. 53, 29-52.   DOI
14 Danielsen, L., Thurmer, A., Meinicke, P., Buee, M. and Morin, E. 2012. Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities. Ecol. Evol. 2, 1935-1948.   DOI
15 Denchev, T. T. and Denchev, C. M. 2014. The genus Moreaua in Japan and Korea. Mycotaxon 127, 73-80.   DOI
16 Gottel, N. R., Castro, H. F., Kerley, M., Yang, Z. and Pelletier, D. A. 2011. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl. Environ. Microbiol. 77, 5934-5944.   DOI
17 Grada, A. and Weinbrecht, K. 2013. Next-generation sequencing: methodology and application. J. Invest. Dermatol. 133, e11.
18 Kim, C. S., Han, S. K., Nam, J. W., Jo, J. W., Kwag, Y. N., Han, J. G., Sung, G. H., Lim, Y. W. and Oh, S. 2017. Fungal communities in a Korean red pine stand, Gwangneung Forest, Korea. JAPB. 10, 559-572.
19 Kim, M., Jones, A. D. and Chung, T. Y. 1996. Antioxidative activity of flavonoids isolated from Jindalrae flowers (Rhododendron mucronulatum Turcz.). App. Biol. Chem. 39, 320-326.
20 Kim, M., Jones, A. D. and Chung, T. Y. 1996. Antioxidative activity of phenolic acids Isolated from Jindalrae flower (Rhododendron mucronulatum Turzaninow). Appl. Biol. Chem. 39, 506-511.
21 Kim, M., Yoon, H., You, Y. H., Kim, Y. E., Woo, J. R., Seo, Y., Lee, G. M., Kim, Y. J., Kong, W. S. and Kim, J. G. 2013. Metagenomic analysis of fungal communities inhabiting the fairy ring zone of Tricholoma matsutake. J. Microbiol. Biotechnol. 23, 1347-1356.   DOI
22 Lee, J. H., Jeon, W. J., Yoo, E. S., Kim, C. M. and Kwon, Y. S. 2005. The chemical constituents and their antioxidant activity of the stem of Rhododendron mucronulatum. Nat. Prod. Sci. 11, 97-102.
23 Denchev, C. M., Choi, Y., Lee, S. and Shin, H. 2007. New records of smut fungi from Korea. 1. Mycotaxon 100, 67-72.
24 Mok, S. Y. and Lee, S. 2012. Identification of flavonoids and flavonoid rhamnosides from Rhododendron mucronulatum for. albiflorum and their inhibitory activities against aldose reductase. Food Chem. 123, 969-974.
25 Shokralla, S., Spall, J. L., Gibson, J. F. and Hajibabaei, M. 2012. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794-1805.   DOI
26 Lim, Y. W., Kim, B. K., Kim, C., Jung, H. S., Kim, B. S., Lee, J. H. and Chun, J. 2010. Assessment of soil fungal communities using pyrosequencing. J. Microbiol. 48, 284-289.   DOI
27 Park, I. H. and Cho, K. J. 2012. Management methods and vegetation characteristics of Rhododendron mucronulatum habitat in Mt. Biseul. J. Kor. Env. Res. Tech. 15, 55-66.
28 Shivas, R. G., Barrett, M. D., Barrett, R. L. and Vanky, K. 2011. Two new species of Moreaua (Ustilaginomycetes), on Actinoschoenus and Chrysitri, from Western Australia. Mycol. Balc. 8, 137-140.
29 Streit, W. R. and Schmitz, R. A. 2004. Metagenomics--the key to the uncultured microbes. Curr. Opin. Microbiol. 7, 492-498.   DOI
30 Lee, S. W., Choi, S. H., Hong, Y. S. and Lim, S. I. 2007. Grayanotoxin poisoning from flower of Rhododendron mucronulatum in humans. Bull. Environ. Contam. Toxicol. 78, 132-133.   DOI
31 Wu, Y. T., Wubet, T., Trogisch, S., Both, S. and Scholten, T. 2013. Forest age and plant species composition determine the soil fungal community composition in a Chinese subtropical forest. PLoS One 8, e66829.   DOI
32 Zak, D. R., Holmes, W. E., White, D. C., Peacock, A. D. and Tilman, D. 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84, 2042-2050.   DOI
33 An, B. J., Lee, C. E., Son, J. H., Lee, J. Y., Choi, G. H. and Park, T. S. 2005. Antioxidant, anticancer and tyrosinase inhibition activities of extracts from Rhododendron mucronulatum T. Appl. Biol. Chem. 48, 280-284.
34 Zinger, L., Coissac, E., Choler, P. and Geremia, R. A. 2009. Assessment of microbial communities by graph partitioning in a study of soil fungi in two alpine meadows. Appl. Environ. Microbiol. 75, 5863-5870.   DOI