• Title/Summary/Keyword: Soil Acidity

Search Result 287, Processing Time 0.03 seconds

A Study on Growth Conditions of the Protected Trees in Gyeongju-si (경주시 보호수 생육실태 연구)

  • Heo Sang-Hyun;Ha Jae-Ho
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.883-890
    • /
    • 2004
  • The purpose of this study is to survey and analyze the growth, management and surrounding environment of the big and old trees in Kyoungju-si or the cultural assets alive in our history, and thereby, provide for some data useful to their reasonable protection and use of their surrounding areas. As a result of surveying the growth conditions of the big and old trees, it was found that the height of new grass was 10.5cm on average, the activity scale of the wood was 7.2k$\Omega$, the soil hardness was $16.7kg/cm^2$, the soil acidity was pH 4.8, and the soil moisture was $13.3\%$. Such findings suggest that the soil has been acidified by people's frequent passages, but that the other growth conditions are more or less normal. Hence, it is desirable to secure a sufficient space around the trees or reduce people's stamping pressure with some mechanisms. On the other hand, the visible conditions of the trees were found more or less normal, but many trees remained cut or barked (with some cavities), requiring an optimal treatment or measure. Lastly, as the population has decreased in the suburban traditional villages, the surrounding environment seems to be less vulnerable to people's frequent visits. Nevertheless, in consideration of the fact that there are only a few public space for the villagers, it is deemed necessary to rearrange or maintain some parts of the surrounding environment as public space for villagers or hikers.

Studies on Plant Succession of Sand Bars at the Nagdong River Estuary I. Vegetation and Soil Environment (낙동강 하구 사주식생의 천이에 관한 연구)

  • Mun, Hyeong-Tae;Kim, Joon-Ho
    • Journal of Plant Biology
    • /
    • v.28 no.1
    • /
    • pp.79-93
    • /
    • 1985
  • Plant succession and subsequent changes of soil properties were studied in sand bars at the Nagdong River estuary in Korea. By old maps, ages of sand bars such as Namusitdeung, Galmaegideung, Baeghapdeung and Ogryudeung were estimated about 10, 15, 25 and 60 years old, respectively. The dominance-diversity curves and plant species diversity indices among the sand bars showed increasing trend of stability from Galmaegideung toward Ogryudeung. The soil acidity, contents of organic matter and total nitrogen of soil increased significantly from Galmaegideung toward Ogryudeung. The order of successional degree among the sand bars on the basis of the number of plant species, the results of vegetation analysis and changes of soil properties almost coincide with the order of age among the sand bars. However, the order of successional degree between Namusitdeung and Galmaegideung was more or less obscured because of cyclic succession driven by allogenic processes.

  • PDF

Soil Physiochemical Properties in Leaf-yellowing Black Locust (Robinia Pseudo-acacia L.) Stands (아까시나무 황화현상 발생임분의 토양 이화학적 특성)

  • Lee, Seung-Woo;Byun, Jae-Kyoung;Ji, Dong-Hun;Kwon, Young-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.409-414
    • /
    • 2009
  • In 1970's Black locust(Robinia pseudoacacia) had been widely planted Korea as an important forest greening species for erosion control afforestation. Since 2000, however, the tree's leaf-yellowing symptom has often been observed at a limited region and then spreaded out over the country in 2006. This study was conducted to study soil physiochemical properties of black locust stands with and without the leaf-yellowing symptom in Osan, Gyeonggi province. Most of soils in sampling sites were mostly slightly eroded, dry, and moderately dry. Available soil depth(16cm) and total soil depth(26cm) in leaf-yellowing (LY) site were significantly lower than in non leaf-yellowing (Non-LY) site's soil depths which were 30cm and 56cm, respectively. And solid phase proportion and bulk density in soils were lower in LY site than in non-LY site soils, while soil liquid phase proportion was also low. It could reflect that LY site soils might have a lower air and moisture movement in the rhizosphere of black locust stand compared with non-LY site soils. Soil acidity in both sites was very strong acid, soil pH (4.42) of LY site was slightly lower than non-LY site's (pH 4.54). Content of available phosphorous, exchangeable $Ca^{2+}$ and $Mg^{2+}$ and percent base saturation were less than LY site. These results indicated that soil physiochemical condition in LY site, more deteriorated than non-LY site, should adversely affect the retention and supply capacity of soil nutrients and moisture. Therefore the black locust may be more sensitive to other environmental stresses.

Differences in Soil Chemical Properties Under Multi-layer System, USGA System and Mono-layer System for a Sports Turf (스포츠용 잔디의 다단구조, USGA구조 및 단층구조 지반에서 토양 화학성 차이)

  • Kim, Kyoung-Nam
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.50-59
    • /
    • 2006
  • This study was initiated to investigate soil chemical properties under different soil systems. Data such as soil acidity(pH), electrical conductivity(EC), organic matter content(OMC), and cation exchange capacity(CEC) were analyzed with samples from multi-layer, USGA, and mono-layer systems. N, P, K and micronutrients were also measured. Multi-layer system was built up to 60-cm depth with rootzone layer, intermediate layer and two drainage layers. USGA system 45 centimeters deep was constructed with rootzone layer, intermediate layer and drainage layer. Mono-layer system, however, was made only with a 30-cm rootzone layer. Differences were observed in soil pH, EC, OMC, CEC and micronutrients. Soil pH was acceptable for turfgrass growth a year after establishment, being 5.5 to 6.5 in the study. Differences were greatly observed for EC among soil systems. Values of EC for multi-layer, USGA, and mono-layer systems were 39.79, 31.26 and 103.54 uS/em, respectively. The increase rate was approximately 4 to 8 times greater with mono-layer system than those with other two systems. Therefore, it was necessary to avoid micronutrient deficiency such as Fe, Mn etc. through an effective management program in mono-layer system because of its faster potential feasibility of salt accumulation. The greatest OMC was associated with USGA system, being 0.97% which was 11% over that of the other systems. Slight differences were observed for CEC among them. Mono-layer system produced 1.45 me/100g, 10.3% and 8.9% lower in CEC than those of multi-layer and USGA system, respectively. Micronutrients such as Fe, Zn, and Mn etc. were below the level required for turf growth, regardless of soil systems. It was considered that one year after turf establishment was not enough to build up micronutrients in sand-based soil systems to the normal level for a turf growth. These results demonstrate that intensive management program including grow-in concept fertilization should be integrated into sand-based soil systems, even after a year in establishment. Regular nutrient monitoring by soil analyses is a strong necessity to decide the kinds and amount of fertilizer. Also, strategic management program must be selectively employed according to sports turf soil systems.

Growth Characteristic of Pinus densiflora by Soil Generated at Civil Works Site (현장발생토 활용 식재기반 조성유형별 소나무 생육 특성 평가)

  • Oh, Deuk-Kyun;Kim, Phil-Lip;Yoon, Yong-Han;Kim, Won-Tae
    • Journal of Environmental Science International
    • /
    • v.28 no.8
    • /
    • pp.655-667
    • /
    • 2019
  • This research aims to identify the possibility of developing A horizon resources that can be used for construction and civil engineering work. As such, the utility of A horizon resources was examined by establishing planting ground through a mixture of soil layers and by analyzing the growth and development of Pinus densiflora. The physicochemical and physical properties of the soil were as follows: the A horizon was sandy clay loam, B horizon was sandy loam, and the mixture of two layers appeared as sandy loam, which was identical to the B horizon. The experimental groups did not show any significant difference in their physical properties of porosity and degree of water-stable aggregates. With regards to chemical properties, the A horizon as well as the mixture of A and B horizon showed acidity while the B horizon showed alkalinity. The figures of organic matter, total nitrogen, available phosphate, and replaceable potassium were greater as the A horizon content increased, whereas the figures of replaceable calcium, replaceable magnesium, and conductivity increased as the A horizon content decreased. As a result of the growth and development of Pinus densiflora in each planting ground, the final survival rates were all above 100%. However, the tree height and the rate of growth for the diameter of root were higher in the order of A horizon > A horizon + B horizon > B horizon,indicating that the increased A horizon content is related to the growth and development of Pinus densiflora. The treatment of soil with improvement agents, used to recover the functions of in-situ soil showing poor growth and development, did not have a clear impact on the soil texture and porosity. However, the degree of water-stable aggregates increased significantly when using O horizon as the soil improvement agent among the types of in-situ soil. In contrast, all items related to the chemical properties showed significant differences following the treatment by soil improvement agents. The survival rate according to the treatment of soil improvement agents for the growth and development of Pinus densiflora was higher in the order of organic horizon = no treatment > compound fertilizer > organic fertilizer + compound fertilizer > organic fertilizer; this result was statistically significant with a marginal significance value of the log-rank test(p < 0.05).

Soil and Leaf Chemical Properties and Fruit Quality in Kiwifruit Orchard (국내 키위 주산지 토양 및 엽 화학성과 과실 특성)

  • Kim, Hong Lim;Lee, Mock-hee;Chung, Kyeong-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.3
    • /
    • pp.158-166
    • /
    • 2022
  • BACKGROUND: Kiwifruit is a fruit tree with relatively small cultivation area in Korea and researches on its soil and physiology are very limited compared to those on cultivar development. Therefore, there are limited information for farmers to cope with the reduction in productivity due to various physiological disorders and premature aging. This study was conducted to investigate the soil and leaf chemical properties, and fruit characteristics, which will be used as basic data for stable kiwifruit orchard soil management. METHODS AND RESULTS: The soil and leaf chemical properties, and fruit characteristics were investigated for two years in 16 kiwifruit orchards growing 'Hayward' (Actinidia deliciosa) in Jeollanam-do and Gyeongsangnam-do. Soil and leaf samples were collected in July and fruit quality was investigated by harvesting fruits about 170 days after full bloom. The average soil chemical properties of kiwi orchards were generally higher than the recommended level, except for pH, and especially, the exchangeable potassium reached about 300% of the recommended level. The proportions of orchards that exceeded the recommended level of soil chemical properties were 63, 31, 100, 69, 94, 88 and 69% for pH, EC, organic content, available phosphate, and exchangeable potassium, calcium and magnesium, respectively. Thirty-three percent of orchards had more than 100 mg/kg of nitrate nitrogen in soil. Available phosphate in soil showed a significantly positive correlation with leaf nitrogen, phosphoric acid and calcium content, but showed a significantly negative correlation with leaf potassium content. The magnesium content in the leaves was significantly correlated with soil pH. The highest fruit weight was observed in about 25 g/kg of leaf nitrogen content which could be attained when plants were grown on the soil containing about 100 mg/kg of nitrate nitrogen content. The average soluble solids content among 16 orchards was 9.58 °Brix at harvest and 13.9 °Brix after ripening, which increased about 45%, and the average fruit weight was about 110 g. CONCLUSION(S): For fruit quality, fruit soluble solids (sugar compounds) content was significantly correlated with leaf potassium content, fruit hardiness with leaf total nitrate, calcium and magnesium, and fruit titratable acidity with leaf magnesium; however, leaf calcium and magnesium negatively affect the soluble solids contents in fruits.

Varietal Difference of Growth Response to Soil Acidity in Soybean (토양산도에 따른 대두생육반응의 품질간 차이)

  • 이홍석;정병용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 1987
  • To obtain basic information concerning the soybean cultivar differences of physiological and ecological responses to soil pH to select and breed stably higher yielding cultivars, and to improve cultural management of soil differing in pH, the responses of soybean plants in growth, grain yield, nodule formation and its activity, and major chemical compositions of soybean plants were investigated using six cultivars and two levels of soil pH 5 and 7 of the pot and field experimental soil in Suwon, 1985. Acidic soil condition suppressed overall vegetative growth of soybean plants and thereby decreased stem length, number of nodes, leaf area, dry weight of the plants, root activity, nodulation and nodule activity, the content of allantoin nitrogen, total nitrogen, phosphorous, calcium, and magnesium of the plants. Due to the such responses of soybean plants to the acid soil, grain yield also decreased along with less grains per plant. However, the little difference in growth and yield of the cultivar Janbaeglcong in response to soil pH is considered to be a good source of breeding materials tolerant to acidic soil condition. In this regard Bongeui and Oialkong also were relatively stable in the growth and grain yield under the different soil acidity conditions.

  • PDF

A study on determination of the lime requirement based on exchangeable aluminum content (치환성(置換性) Al 함량(含量)에 따른 석탄소요량(石炭所要量) 결정(決定)에 관(關)한 연구(硏究))

  • Ryu, In Soo;Cho, Seong Jin;Yuk, Chang Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.185-191
    • /
    • 1974
  • Incubation and pot studies were conducted with upland soils for a study on determination of the lime requirement based on exchangeable alumium content. The results obtained are as follows; 1. Results of chemical analysis of upland soils show that pH varies from 5.0 to 5.4, and exchangeable Al moves with the range of 1.3-3.0m.e/100gr. Exchangeable Al decreases with years of cultivation. 2. Incubation studies shows that on acid mineral soils almost all exchangeable Al, on average 95% was neutralized with the lime to neutralized 100% exchangeable Al. On volcanic ash soil, however, only 65.5% was neutralized with the lime estimated to neutralize the equivalent of 200% exchangeable Al. The latter has required more lime. 3. The pH of mineral soils is on the average increased from an initial 5.2 to 6.3 when 95% of exchangeable Al is neutralized, whereas that on volcanic ash soil is increased from an initial 5.3 to 5.5 only when lime is applied at rate to neutralize the equivalent of 200% exchangeable Al. 4. A high correlation coefficient (r=0.99) was obtained between exchangeable Al and exchangeable acidity. This indicates that exchangeable acidity is primarly a result of exchangeable Al. 5. In pot experiments with soybean cultivated on one of the hill land soils (Songjoong soil) the application of fused phosphate and triple superphosphate based on a 5% saturation rate ($P_2O_5$ 32.1 kg/10a) showed that the liming factor for calculation of the optimum lime requirements based on exchangeable acidity was 0.594 for fuses phosphate or 1.132 for tripple superphosphate, and optimum pH is approximately 6.0 and optimum neutralization rate of exchangeable Al is 80-90%.

  • PDF

Studies on the Distribution of Streptomyces spp. in Soil in Korea (한국토양(韓國土壤)의 방선균(放線菌) 분포(分布)에 관(關)한 연구(硏究))

  • Park, J.E.;Choi, Y.C.;Sin, Y.H;Lee, K.H.
    • Korean journal of applied entomology
    • /
    • v.25 no.1 s.66
    • /
    • pp.47-51
    • /
    • 1986
  • A study was undertaken to investigate the distribution of Streptomyces spp. in soil in Korea. Among the different types of soil surveyed, the highest population of Streptomyces spp. recording $5.6{\times}10^5\;CFU/g$ was observed in upland soil. With reference to the soil depth, most of their population was distributed from soil surface to 5cm depth and the highest value was found in $0{\sim}2cm$ soil depth. Comparing the population of Streptomyces spp. with different soil color (by Munsell soil color chart), the highest value of $9.2{\times}10^\;CFU/g$ was showed in Oliver yellow soil (2.5Y, 6/4). On the basis of the acidity of soil samples subjected to Streptomyces spp. isolation, it is considered that the optimum pH range for Streptomyces spp. in soil lies between 6.0 to 7.5, showing the highest value of $1.05{\times}10^6CFU/g$ at pH 7.5. Among the colors of isolated colonies, gray and white colonies occupied 60% and 26% of the total isolates respectively.

  • PDF

Analysis and Improvement of Soil Physical and Chemical Properties for Transplantation of Damaged Trees (훼손 수목의 이식을 위한 토양의 물리·화학적 특성 분석과 개선 방안)

  • Hyesu, Kim;Jungho, Kim;Yoonjung, Moon;Seonmi, Lee
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.423-437
    • /
    • 2022
  • Parts of damaged trees are being transplanted in accordance with the Environmental Impact Assessment Manual. Problems such as death or poor growth are constantly being addressed in the process of transplanting trees from the forest they originally inhabited to temporary and final transplant sites. The purpose of this study is to analyze the differences in soil properties in the surrounding forest, the temporary transplant site, and the construction site and to suggest methods for improving the soil to make it suitable for the growth of transplanted trees. For 10 development projects, 2 soil samples were sampled from the surrounding forest, temporary transplant site, and construction site. A total of 60 soil samples were analyzed for physical and chemical properties. Among the physical properties such as coefficient of permeability, available moisture, and hardness, and chemical properties such as acidity, organic matter content, total nitrogen, and available P showed significant differences among groups. The soil of the construction site is harder than the surrounding forest because of construction equipments, the coefficient of permeability is higherthan the surrounding forest because of high sand content, and the available moisture was low. It does not retain the moisture necessary for plants in the soil and drains immediately. It is necessary to implement tillage to improve the physical properties and structure of the soil. In addition, it is necessary to cover the surface with wood chips or fallen leaves after adding mature organic matter to improve the physical and chemical properties of the soil together.