DOI QR코드

DOI QR Code

Analysis and Improvement of Soil Physical and Chemical Properties for Transplantation of Damaged Trees

훼손 수목의 이식을 위한 토양의 물리·화학적 특성 분석과 개선 방안

  • Hyesu, Kim (Kalim Environment co., LTD) ;
  • Jungho, Kim (Korea Soil Resources Research Institute) ;
  • Yoonjung, Moon (Division of Ecological Assessment, National Institute of Ecology) ;
  • Seonmi, Lee (Division of Ecological Assessment, National Institute of Ecology)
  • Received : 2022.11.21
  • Accepted : 2022.12.12
  • Published : 2022.12.31

Abstract

Parts of damaged trees are being transplanted in accordance with the Environmental Impact Assessment Manual. Problems such as death or poor growth are constantly being addressed in the process of transplanting trees from the forest they originally inhabited to temporary and final transplant sites. The purpose of this study is to analyze the differences in soil properties in the surrounding forest, the temporary transplant site, and the construction site and to suggest methods for improving the soil to make it suitable for the growth of transplanted trees. For 10 development projects, 2 soil samples were sampled from the surrounding forest, temporary transplant site, and construction site. A total of 60 soil samples were analyzed for physical and chemical properties. Among the physical properties such as coefficient of permeability, available moisture, and hardness, and chemical properties such as acidity, organic matter content, total nitrogen, and available P showed significant differences among groups. The soil of the construction site is harder than the surrounding forest because of construction equipments, the coefficient of permeability is higherthan the surrounding forest because of high sand content, and the available moisture was low. It does not retain the moisture necessary for plants in the soil and drains immediately. It is necessary to implement tillage to improve the physical properties and structure of the soil. In addition, it is necessary to cover the surface with wood chips or fallen leaves after adding mature organic matter to improve the physical and chemical properties of the soil together.

환경영향평가서 작성 및 검토 매뉴얼에 따라 훼손되는 수목의 일부를 이식하고 있다. 수목이 원래 서식하고 있는 산림에서 가이식장과 최종 이식장으로 이식하는 과정에서 고사하거나 생육이 불량한 등의 문제점이 지속적으로 제기되고 있다. 이 연구의 목적은 가이식장과 최종 이식장의 토양 특성을 파악하여 기존에 서식하던 산림 토양과의 차이를 분석하고, 이식한 수목의 생육에 적합한 토양으로 개선하는 방안을 제시하는 것이다. 10개의 환경영향평가 사업을 대상으로, 원래의 서식지인 주변의 산림지역, 훼손수목의 일부를 임시로 이식하고 있는 가이식장, 공사가 완료된 후 최종 이식을 하게 되는 공사장을 대표하는 지점에서 각각 2개씩, 총 60개의 토양을 샘플링하여 물리적 특성과 화학적 특성을 분석하였다. 물리적 특성 중에서 투수계수, 유효수분율, 경도, 화학적 특성 중에서 산도, 유기물함량, 전질소, 유효인산에서 집단 간 유의한 차이가 있는 것으로 나타났다. 공사장의 토양은 공사 장비로 인한 답압으로 주변의 산림보다 경도가 높고, 모래 함량이 많아 투수계수는 높으며 유효수분율은 낮아 식물이 필요한 토양 내 수분을 보유하지 못하고 배수되는 양이 많다. 경도가 높은 토양의 공극량을 증가시키고 물리적 구조를 개선하기 위하여 경운을 실시할 필요가 있다. 또한 토양의 물리성과 화학성을 함께 개선하기 위하여 토양 내 부숙된 유기물을 첨가한 후 우드칩이나 낙엽으로 표면을 덮어주는 것이 필요하다.

Keywords

Acknowledgement

본 연구는 국립생태원의 「환경영향평가 가이식장 운영 개선 연구(NIE-기반연구-2021-30)」와 국립환경과학원의 「환경영향평가서 등의 검토사업」의 지원을 받아 수행하였습니다.

References

  1. Abdul Khalil HPS, Hossain MS, Rosamah E, Azli NA, Saddon N, Davoudpoura Y, Islam MN, Dunbgani R. 2015. The role of soil properties and it's interaction towards quality plant fiber: A review. Renewable and Sustainable Energy Reviews 43: 1006-1015. https://doi.org/10.1016/j.rser.2014.11.099
  2. Adhikari K, Hartemink AE. 2016. Linking soils to ecosystem services-a global review. Geoderma 262:101-111. https://doi.org/10.1016/j.geoderma.2015.08.009
  3. Andry H, Yamamoto T, Irie T, Moritani S, Inoue M, Fujiyama H. 2009. Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality. Journal of Hydrology 373: 177-183. https://doi.org/10.1016/j.jhydrol.2009.04.020
  4. Barman U, Choudhury RD. 2020. Soil texture classification using multi class support vector machine. Information Processing in Agriculture 7: 318-332. https://doi.org/10.1016/j.inpa.2019.08.001.
  5. Bennett JA, Klironomos J. 2018. Mechanisms of plant-soil feedback: interactions among biotic and abiotic drivers. New Phytologist 222: 91-96. (doi: 10.1111/nph.15603)
  6. Bennett JA, Maherali H, Reinhart KO, Lekberg Y, Hart MM, Klironomos J. 2017. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355: 181-184. https://doi.org/10.1126/science.aai8212
  7. Birnbaum C, Bradshaw LE, Ruthrof KX, Fontaine JB. 2017. Topsoil stockpiling in restoration: impact of storage time on plant growth and symbiotic soil biota. Ecological Restoration 35: 237-245. https://doi.org/10.3368/er.35.3.237
  8. Carvalheiro LG, Bartomeus I, Rollin O, Timoteo S, Tinoco CF. 2021. The role of soils on pollination and seed dispersal. Philosophical Transactions Royal Society B 376, 20200171. (doi:10.1098/rstb.2020.0171)
  9. Cheng K, Xu X, Cui L, Li Y, Zheng J, Wu W, Sun J, Pan G. 2021. The role of soils in regulation of freshwater and coastal water quality. Philosophical Transactions Royal Society B 376, 20200176. (doi:10.1098/rstb.2020.0176)
  10. Choi Y. 2014. Carbon emission study of transplanting large trees - Focused on red pine tree (Pinus densiflora) from Gangwon Province, South Korea - Master's Degree, Graduate School of Seoul National University, p. 57. [Korean Literature]
  11. De Deyn GB, Kooistra L. 2021. The role of soils in habitat creation, maintenance and restoration. Philosophical Transactions Royal Society B 376, 20200170. (doi:10.1098/rstb. 2020.0170)
  12. Giltrap D, Cavanagh J, Stevenson B, Ausseil A-G. 2021. The role of soils in the regulation of air quality. Philosophical Transactions Royal Society B 376, 20200172. (doi:10.1098/rstb.2020.0172)
  13. Goldman SJ, Jackson K, Bursztynsky TA. 1986. Erosion and Sediment Control Handbook. Mc-Graw Hill, pp. 5.1-5.32.
  14. Golos PJ, Dixon KW, Erickson TE. 2016. Plant recruitment from the soil seed bank depends on topsoil stockpile age, height, and storage history in an arid environment. Restoration Ecology 24: S53-S61.
  15. Hamilton NE, Ferry M. 2018. ggtern: Ternary Diagrams Using ggplot2. Journal of Statistical Software, Code Snippets 87(3): 1-17. (doi: 10.18637/jss.v087.c03).
  16. Jung SG. 2012. An Analysis on the use situation of the reusing Landscape tree in lanscaping of re-construction Apartment Complex. Master's degree, the Graduate School of Engineering, Hanyang University, p. 143. [Korean Literature]
  17. Kaisermann A, Vries FT, Griffiths RI, Bardgett RD. 2017. Legacy effects of drought on plant-soil feedbacks and plant-plant interactions. New Phytologist 215: 1413-1424. (https://doi.org/10.1111/nph.14661)
  18. Keesstra S, Sannigrahi S, Lopez-Vicente M, Pulido M, Novara A, Visser S, Kalantari Z. 2021. The role of soils in regulation and provision of blue and green water. Phil. Philosophical Transactions Royal Society B 376, 20200175. (doi:10.1098/rstb.2020.0175)
  19. Kim DY, Lee SH, Im SJ. 2011. Analysis of the effects of tree roots on soil reinforcement considering its spatial distribution. Journal of the Korea Society of Environmental Restoration Technology 14(4): 41-54. [Korean Literature]
  20. Kim IC, Lee JH, Joo YK, Minner D. 2002. Effects of rubber chips from used tires on spots turf ground as soil conditioner. Korean Journal of turfgrass science 16(1): 19-30. [Korean Literature]
  21. Kim JH, Kim KT, Lee HJ. 2009. Analysis of Korea Soil Loss and Hazard Zone. The Journal of GIS Association of Korea 17(3): 261-268. [Korean Literature]
  22. Korea Environment Institute. 2017. 「EIA Guideline Series A(Ver2.0)」. p. 21. [Korean Literature]
  23. Korea Land Development Corporation. 1994. The Study of Utilizing Wild Plants in Land Development District-Focused on New Town (Bundang and Ilsan)-. Korea Land Development Corporation Report, p. 113. [Korean Literature]
  24. Lal R, Monger C, Nave L, Smith P. 2021. The role of soil in regulation of climate. Phil. Philosophical Transactions Royal Society B 376, 20210084. (doi:10.1098/rstb.2021.0084).
  25. Lee SC, Jo BY, Choi SH. 2015. A study of establishment ratio of native tree transplant. Korean Institute of Landscape Architecture 43(2): 23-29. [Korean Literature] https://doi.org/10.9715/KILA.2015.43.2.023
  26. Lee SD, Kang HK. 2012. Transplantation method of damage ecosystem associated with development of the borrow pits. Korean Journal of Environment and Ecology 26(3): 394-405. [Korean Literature]
  27. Lee SD, Choi SH. 2009. Study on the selection criteria for transplanting trees in the forest reserve areas designated for future development. Korean Journal of Environment and Ecology 23(6): 535-544. [Korean Literature]
  28. Lee TH, Kim SW, Shin YC, Jung YH, Lim KJ, Yang JE, Jang WS. 2019. Development of soil organic carbon storage estimation model using soil characteristics. Journal of the Korean Society of Agricultural Engineers 61(6): 1-8. [Korean Literature]
  29. Li Z, Schneider RL, Morreale SJ, Xie Y, Li C, Li C. 2018. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma 310: 143-152. https://doi.org/10.1016/j.geoderma.2017.09.009
  30. Lim JH, Lee JK, Kim HH. 2002. A study on the transplantation methods of large trees - The case of Celtis sinensis in Chonan and Gingko biloba in Andong -. Journal of Korean Institute of Landscape Architecture 30(4): 92-104. [Korean Literature]
  31. Moon YJ, Park HJ, Cha JG, Na JJ, Lee SM. 2021. Stakeholder perception on the transplanting damaged Trees. Journal of Environmental Impact Assessment 30(6): 361-379. [Korean Literature]
  32. Munoz-Rojas M, Erickson TE, Martini DC, Dixon KW, Merritt DJ. 2016. Climate and soil factors influencing seedling recruitment of plant species used for dryland restoration. The Soil 2: 287-298. https://doi.org/10.5194/soil-2-287-2016
  33. Puhalla J, Krans J, Goatley M. 2002. Sports fields: A manual for design, construction and maintenance. Ann Arbor Press, MI, USA.
  34. Putten WH, Bradford MA, Brinkman EP, Voorde TFJ, Veen GF. 2016. Where, when and how plant-soil feedback matters in a changing world. Functional Ecology 30(7): 1109-1121. https://doi.org/10.1111/1365-2435.12657
  35. Institute of Agricultural Science and Technology. 2000. Soil and plant analysis methods. p. 202. [Korean Literature]
  36. Samaddar S, Karp DS, Schmidt R, Devarajan N, McGarvey JA, Pires AFA, Scow K. 2021. Role of soil in the regulation of human plant pathogens: soils' contributions to people. Philosophical Transactions Royal Society B 376, 20200179. (doi:10.1098/rstb.2020.0179)
  37. Smith P, Keesstra SD, Silver WL, Adhya TK. 2021. The role of soils in delivering Nature's Contributions to People. Philosophical Transactions Royal Society B 376: 20200169. https://doi.org/10.1098/rstb.2020.0169
  38. Son JG, Cho JY. 2009. Effect of organic material treatments on soil aggregate formation in reclaimed tidelands. Korean Society of Soil Science and Fertilizer 42(3): 201-206. [Korean Literature]
  39. Toth G, Hermann T, da Silva MR, Montanarella L. 2018. Monitoring soil for sustainable development and land degradation neutrality. Environmental Monitoring and Assessment 190: 57. https://doi.org/10.1007/s10661-017-6415-3
  40. Xi N, Adler PB, Chen D, WU H, Catford JA, Bodegom PM, Bahn M, Crawford KM, Chu C. 2021. Relationships between plant-soil feedbacks and functional traits. Journal of Ecology 109: 3411-3423. (doi:10.1111/1365-2745.13731)
  41. Xiong Y, Yu B, Bai M, Zhang X, Huang G, Furman A. 2019. Soil properties and plant growth response to litter in a prolonged enclosed grassland of Loess Plateau, China. Journal of Earth Science 30(5): 1041-1048. https://doi.org/10.1007/s12583-019-1017-3
  42. Yun BK, Jung PK, Oh SJ, Kim SK, Ryu IS. 1996. Effects of compost application on soil loss and physico-chemical properties in lysimeters. Korean Society of Soil Science and Fertilizer 29(4): 336-341. [Korean Literature]
  43. EIASS (Environmental Impact Assessment Information Suport System). Consultation status statistics. https://www.eiass.go.kr/statistic/statusStatsNew.do (2022.10.28. accessed). [Korean Literature]
  44. RStudio Team. 2022. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA. URL http://www.rstudio.com/.
  45. Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer International Publishing, New York. https://link.springer.com/book/10.1007/978-3-319-24277-4.