Software defect severity is very important in projects with limited historical data or new projects. But general software defect prediction is very difficult to collect the label information of the training set and cross-project defect prediction must have a lot of data. In this paper, an unclassified data set with defect severity is clustered according to the distribution ratio. And defect severity-based prediction model is proposed by way of labeling. Proposed model is applied CLAMI in JM1, PC4 with the least ambiguity of defect severity-based NASA dataset. And it is evaluated the value of ACC compared to original data. In this study experiment result, proposed model is improved JM1 0.15 (15%), PC4 0.12(12%) than existing defect severity-based prediction models.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권11호
/
pp.4028-4042
/
2021
Aiming at the problem of software defect prediction difficulty caused by insufficient software defect marker samples and unbalanced classification, a semi-supervised software defect prediction model based on a tri-training algorithm was proposed by combining feature normalization, over-sampling technology, and a Tri-training algorithm. First, the feature normalization method is used to smooth the feature data to eliminate the influence of too large or too small feature values on the model's classification performance. Secondly, the oversampling method is used to expand and sample the data, which solves the unbalanced classification of labelled samples. Finally, the Tri-training algorithm performs machine learning on the training samples and establishes a defect prediction model. The novelty of this model is that it can effectively combine feature normalization, oversampling techniques, and the Tri-training algorithm to solve both the under-labelled sample and class imbalance problems. Simulation experiments using the NASA software defect prediction dataset show that the proposed method outperforms four existing supervised and semi-supervised learning in terms of Precision, Recall, and F-Measure values.
소프트웨어 결함 예측(SDP)은 오류가 발생할 가능성이 있는 모듈을 사전에 식별하여 소프트웨어 개발의 효율을 높이고 있다. SDP에서의 주과제는 예측 성능을 향상시키는것에 있다. 최근 연구에서는 딥러닝 기법이 소프트웨어 결함 예측(SDP) 분야에 적용되어 있으며, 특히 구조화된 데이터를 분석하는 데 뛰어난 성능을 보이고 있는 SAINT 모델이 주목받고 있다. 본 연구는 SAINT 모델을 다른 주요 모델(XGBoost, Random Forest, CatBoost)과 비교하여 SDP에 적용 가능한 최신 딥러닝 기법을 조사하였다. SAINT는 일관되게 우수한 성능을 보여주며 결함 예측 정확도 향상에 효과적임을 입증하였다. 이 연구 결과는 실용적인 소프트웨어 개발 상황에서 결함 예측 방법론을 발전시킬 수 있는 SAINT의 잠재력을 강조하며, 교차 검증, 특성 스케일링, 비교 분석 등을 포함한 철저한 방법론을 통해 수행되었다.
최근 소프트웨어 결함 예측 연구는 교차 프로젝트 간의 결함 예측뿐만 아니라 교차 버전 프로젝트 간의 결함 예측 또한 이루어지고 있다. 종래의 교차 버전 결함 예측 연구들은 WP(Within-Project)로 가정한다. 하지만, CV(Cross-Version) 환경에서는 프로젝트 버전 간의 분포 차이의 중요성을 고려한 연구들이 없다. 본 연구에서는 다른 버전 간의 분포 차이까지 고려하는 자동화된 베이지안 최적화 프레임워크를 제안한다. 이를 통해 분포차이에 따라 전이 학습(Transfer Learning) 수행 여부를 자동으로 선택하여 준다. 해당 프레임워크는 버전 간의 분포 차이, 전이 학습과 분류기(Classifier)의 하이퍼파라미터를 최적화하는 기법이다. 실험을 통해 전이 학습 수행 여부를 분포차 기준으로 자동으로 선택하는 방법이 효과적이라는 것을 알 수 있다. 그리고 최적화를 이용하는 것이 성능 향상에 효과가 있으며 이러한 결과 소프트웨어 인스펙션 노력을 감소할 수 있다는 것을 확인할 수 있다. 이를 통해 교차 버전 프로젝트 환경에서 신규 버전 프로젝트에 대하여 효과적인 품질 보증 활동 수행을 지원할 것으로 기대된다.
International Journal of Computer Science & Network Security
/
제22권10호
/
pp.1-10
/
2022
Nowadays software defect prediction (SDP) is most active research going on in software engineering. Early detection of defects lowers the cost of the software and also improves reliability. Machine learning techniques are widely used to create SDP models based on programming measures. The majority of defect prediction models in the literature have problems with class imbalance and high dimensionality. In this paper, we proposed Centroid and Nearest Neighbor based Class Imbalance Reduction (CNNCIR) technique that considers dataset distribution characteristics to generate symmetry between defective and non-defective records in imbalanced datasets. The proposed approach is compared with SMOTE (Synthetic Minority Oversampling Technique). The high-dimensionality problem is addressed using Ant Colony Optimization (ACO) technique by choosing relevant features. We used nine different classifiers to analyze six open-source software defect datasets from the PROMISE repository and seven performance measures are used to evaluate them. The results of the proposed CNNCIR method with ACO based feature selection reveals that it outperforms SMOTE in the majority of cases.
International Journal of Computer Science & Network Security
/
제22권10호
/
pp.11-16
/
2022
Applying predictive analytics to predict software defects has improved the overall quality and decreased maintenance costs. Many supervised and unsupervised learning algorithms have been used for defect prediction on publicly available datasets. Most of these datasets suffer from an imbalance in the output classes. We study the impact of class imbalance in the defect datasets on the efficiency of the defect prediction model and propose a CPP method for handling imbalances in the dataset. The performance of the methods is evaluated using measures like Matthew's Correlation Coefficient (MCC), Recall, and Accuracy measures. The proposed sampling technique shows significant improvement in the efficiency of the classifier in predicting defects.
검증과 확인을 통한 소프트웨어의 효율적인 관리를 지원하기 위하여 객체지향 메트릭 기반의 결함 예측 모형이 많이 제안되고 있다. 제안된 모형은 주로 로지스틱 회귀분석으로 개발하였다. 그리고 개발된 모형의 결함 예측 정확도는 60${\sim}$70%이었다. 본 논문에서는 기존 결함 예측 모형의 효과를 확인하기 위하여 이클립스 3.3을 대상으로 개발된 모형과 유사한 방법으로 실험을 하였다. 실험 결과 모형의 정확성은 약 40%이었다. 이는 주장된 예측력보다 많이 낮은 수치이었다. 또한 단순 로지스틱 회귀분석이 다중 로지스틱 회귀분석보다 높은 예측력을 보였다.
소프트웨어 결함 예측은 결함이 자주 발생하는 모듈에 집중함으로써 소프트웨어 품질 보증 활동에 귀중한 프로젝트 리소스를 효과적으로 할당하는 데 도움이 될 수 있다. 회사 내에서 수집 된 충분한 기록 데이터를 사용하여 정확한 결함 발생 가능성이 높은 모듈 예측에 대해 WPDP (프로젝트 내 결함 예측)를 사용할 수 있다. 회사가 과거 데이터를 유지하지 못한 경우 CPDP (Cross-Project Defect Prediction) 메커니즘을 기반으로 오류를 예측하는 분류기를 만드는 것이 도움이 될 수 있다. CPDP는 다른 조직에서 수집 한 다른 프로젝트 데이터를 사용하여 분류기를 작성하기 때문에 정확한 분류기를 만드는데 가장 큰 장애물은 소스와 대상 프로젝트 간의 서로 다른 분포이다. 이 문제의 해결을 위해 효과적인 유사도 측정 기술을 식별하는 것이 중요하므로, 본 논문에서는 다양한 유사도 측정 기술을 CPDP 모델에 적용하여 성능을 비교한다. 유사도 가중치의 유효성을 평가하고, 통계적 유의성 검정 및 효과 크기 검정을 통해 결과를 검증한다. 실험 결과, k-Nearest Neighbor (k-NN), LOcal Correlation Integral (LOCI) 및 Range 방법이 유사도 측정 기술 중 상위 3 개에 속했고, 이들을 사용하는 CPDP 예측 성능이 WPDP의 성능과 유사하였다.
Embedded 소프트웨어의 품길 측정 프로세스 관리는 Embedded 시스템의 적시성과 품질 만족을 위해서도 필요하다. 그러나, Embedded 소프트웨어의 결함에 대하여 사전 분석하거나 예측 없이 개발 프로세스 상에서 결함을 관리하는 것은 위험이 따른다. 본 연구에서는 Embedded 소프트웨어에서 품질 측정 프로세스 관리를 위해 소프트웨어의 정량적 속성 중에 가장 중요한 요소 중에 하나인 결함을 중심으로 본 연구가 진행되었다. Embedded 소프트웨어에 가장 적합한 프로세스를 정의하고 개선하고자 하는 과정에서, 프로세스 관리를 효과적으로 수행하기 위해 Embedded 소프트웨어의 특성과 결함 특성을 이해하고, 이를 근간으로 결함 속성을 정의하고 결함을 통한 품질 측정 프로세스 관리를 할 수 있도록, 결함 데이터를 이용하여 프로세스를 관리하는데 기여하고자 한다. 따라서, 본 연구에서는 결함 데이터 분석을 위해 필요한 속성을 파악하고, 테스트 단계를 중심으로 결함 데이터의 활용과 결함데이터를 이용한 프로세스 관리 방법을 제안하여, 이를 통해 Embedded 소프트웨어 프로세스를 관리하는 분들에게 효과적인 활용이 될 수 있도록 한다.
소프트웨어 결함 예측 연구들의 대부분은 입력 개체의 결함 유무를 예측하는 이진 분류 모델들에 관한 것들이다. 하지만 모든 결함들이 같은 심각도를 갖지는 않으므로 예측 모델이 입력 개체의 결함경향성을 몇 개의 심각도 범주로 분류할 수 있다면 훨씬 유용하게 사용될 수 있다. 본 논문에서는 전통적인 복잡도와 크기 메트릭들을 입력으로 하는 심각도 기반 결함 예측 모델을 제안하였다. 학습 알고리즘은 많이 사용되는 네 개의 기계학습 기법들을 사용하였으며, 모델 구조는 삼진 분류 모델로 하였다. 모델 성능 평가를 위해 실험 데이터는 두 개의 NASA 공개 데이터 집합을 사용하였고, 평가 측정치는 Accuracy를 이용하였다. 평가 실험 결과는 역전파 신경망 모델이 두 데이터 집합에 대해 각각 81%와 88% 정도의 Accuracy 값으로 가장 좋은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.