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1)1. 서  론

Software Defect Prediction (SDP) plays a crucial role in 

the software development process by identifying modules 

that are likely to have errors and effectively allocating re-
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sources to enhance development efficiency. In this field, 

tabular datasets are primarily used, and various machine 

learning models are employed to predict software defects. 

The goal of SDP is to find highly effective defect predic-

tion models to improve software quality. Recently, the 

Self-Attention and Intersample Attention Transformer 

(SAINT) model, equipped with self-attention and inter-

sample attention mechanisms, has shown superior perfor-

mance compared to traditional methods.

This research focuses on how the SAINT model effec-

tively operates in software defect prediction. SAINT em-

ploys a hybrid attention model to learn the interactions 

among various components and utilizes this in integration 

with multi-task models and different modalities, such as 

images and text. These capabilities allow SAINT to be ver-
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요     약

소프트웨어 결함 예측(SDP)은 오류가 발생할 가능성이 있는 모듈을 사전에 식별하여 소프트웨어 개발의 효율을 높이고 있다. SDP에서의 주 

과제는 예측 성능을 향상시키는것에 있다. 최근 연구에서는 딥러닝 기법이 소프트웨어 결함 예측(SDP) 분야에 적용되어 있으며, 특히 구조화된 

데이터를 분석하는 데 뛰어난 성능을 보이고 있는 SAINT 모델이 주목받고 있다. 본 연구는 SAINT 모델을 다른 주요 모델(XGBoost, Random 

Forest, CatBoost)과 비교하여 SDP에 적용 가능한 최신 딥러닝 기법을 조사하였다. SAINT는 일관되게 우수한 성능을 보여주며 결함 예측 정확도 

향상에 효과적임을 입증하였다. 이 연구 결과는 실용적인 소프트웨어 개발 상황에서 결함 예측 방법론을 발전시킬 수 있는 SAINT의 잠재력을 
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satile and perform well even in complex datasets. 

Particularly, SAINT introduces an innovative approach to 

processing tabular data, demonstrating excellent perfor-

mance. However, it has not yet been applied in SDP, and 

this study aims to explore its application. 

Through this research, we aim to empirically demon-

strate how the SAINT-Transformer model is more effective 

than conventional SDP methods. The successful imple-

mentation of this model is expected to significantly im-

prove the accuracy of defect prediction in software devel-

opment, ultimately enhancing software quality and opti-

mizing resource allocation.

2. Related Work

In recent years, Deep Learning (DL) has shown signi-

ficant success across various industries, leading to its ap-

plication in Software Defect Prediction (SDP). Pan et al. 

have utilized advanced Convolutional Neural Networks 

(CNNs) to enhance defect prediction capabilities. They 

specifically addressed certain code issues (PSC) using 

CNNs, advancing defect prediction. Concurrently, Lee et 

al. introduced a novel SDP model based on TabNet, taking 

a different approach from traditional models such as 

XGBoost (XGB) and Random Forest (RF). Evaluations com-

paring these models, including CNNs, highlighted the su-

perior performance of TabNet. Inspired by these develop-

ments, studies have been conducted to further enhance 

SDP models using the FT-Transformer technique.

Somepalli et al. introduced SAINT, an innovative neural 

network architecture tailored for tabular data analysis. It 

integrates row attention mechanisms and contrastive pre- 

training techniques to improve the handling of tabular 

datasets. Additionally, in another related study, Kim et al. 

proposed an SDP technique based on the FT-Transformer, 

which surpassed other performance models such as 

XgBoost and Catboost. Similar to these research efforts, 

we investigate whether the recent DL method, namely 

SAINT, can be applied to SDP.

Chen et al. introduced XGBoost, an efficient and scal-

able implementation of gradient boosting decision trees. 

XGBoost has become one of the most popular machine 

learning libraries for structured/tabular data due to its su-

perior performance, speed, and flexibility. It extends the 

classic gradient boosting framework with several novel 

features, including a highly optimized algorithm, regula-

rization techniques, and parallelization, making it parti-

cularly effective for a range of data mining tasks including 

classification, regression, and ranking.

All the above studies effectively utilize deep learning 

techniques in structured data, demonstrating impressive 

performance. SAINT has also shown significant effects in 

analyzing structured data in other domains. Based on this, 

we apply SAINT to SDP to verify if it can outperform ex-

isting SDP models.

Fig. 1. Research Method
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3. Methodology

In this investigation, the application of the SelfAtten-

tion and Intersample Attention Transformer (SAINT) to 

Software Defect Prediction (SDP) involves a meticulous 

process. To address overfitting concerns, cross-validation 

is employed, effectively partitioning the dataset into train-

ing and testing subsets. The model undergoes training on 

the designated training data and is subsequently evaluat-

ed using separate test data. To augment the model's per-

formance, feature scaling is incorporated, utilizing the 

MIN-MAX normalization technique. This normalization 

ensures that the features maintain a uniform range, typi-

cally between 0 and 1. By implementing this normali-

zation specifically on the training data, the varying scales 

across features are standardized. This not only facilitates 

effective learning but also diminishes the impact of dis-

parate scales on the model. In summary, our study meti-

culously applies SAINT to SDP, integrating rigorous cross- 

validation and MIN-MAX normalization for feature scaling. 

This comprehensive approach enhances the model's ro-

bustness and predictive effectiveness, particularly in the 

realm of software defect prediction. 

This comprehensive approach enhances the model's 

robustness and predictive effectiveness, particularly in the 

realm of software defect prediction. In this research, the 

proposed method, SAINT, draws inspiration from the 

transformer encoder introduced by Vaswani et al., origin-

ally designed for natural language processing.

The transformer architecture takes a sequence of fea-

ture embeddings as input and outputs contextual repre-

sentations of the same dimension. A visual representation 

of SAINT is illustrated in [Figure 1]. SAINT is structured as 

a stack of L identical stages, each comprising a self-atten-

tion transformer block and an intersample attention trans-

former block. Each stage's self-attention transformer 

block closely resembles the encoder from a prior study. 

This block encompasses a multi-head self-attention layer 

(MSA) with h heads, followed by two fully connected feed-

forward (FF) layers featuring a GELU non-linearity.

A skip connection and layer normalization (LN) are in-

cluded in each layer to enhance model stability. On the 

other hand, the intersample attention transformer block 

mirrors the self-attention transformer block, with the dis-

tinction that the self-attention layer is substituted with an 

intersample attention layer (MISA). Further details on the 

intersample attention layer are expounded upon in the 

subsequent subsection. The SAINT pipeline, with a single 

stage (L = 1) and a batch of b inputs, is characterized by 

a set of equations. Multi-head self-attention is denoted by 

MSA, multi-head intersample attention by MISA, feedfor-

ward layers by FF, and layer normalization by LN. This re-

search introduces SAINT as a transformative paradigm, 

leveraging a stack of transformer-based stages that in-

corporate both self-attention and intersample attention 

mechanisms. The adoption of this architecture aims to 

overcome the limitations of conventional models, offering 

a more nuanced and effective approach for the specific 

challenges posed by the dataset under consideration.
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Algorithm 1 encapsulates the SAINT, expressed in code 

for processing features denoted as x within the SAINT 

module. Its transforms features into structured tokens and 

consistently tokenize them. Uniformly process the toke-

nized features (lines 1-3). It uses the tokenized features to 

transform data through the Transformer module (lines 

4-6). It redefines the [CLS] token and top-level tokens to 

facilitate subsequent predictions.

Algorithm1. SAINT

Input : Train Data X

Output：Data Y Predicted for fault

1: /*Preprocessing*/

2: X is Oversampled

3: MIN-MAX ← X

4: X is Normalization

5: Feature Tokenizer ← X

6: X is Tokenized

7: T = X

8: T1 = T[CLS]

9: /*[CLS]is top-level token containing the   
     contents of all data*/ 

10: Transformer ← T1

11: T2 = Newly defined T1 in Transformer Model 

Algorithm 1. SAINT
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Redefine the [CLS] token within the algorithm. It uses 

the [CLS] token to make predictions using the transformed 

data (lines 7-9). 

The SAINT formulation in this paper succinctly de-

scribes the key processes of tokenization, data trans-

formation, and predictive steps. The formulation con-

stituting the SAINT used in this paper is as follows:
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4. Experimental Setups

4.1 Research Questions

RQ1: How does SAINT's defect prediction performance 

compare to other techniques?




:The defect prediction performance of SAINT is sim-

ilar to that of other models.


  The defect prediction performance of SAINT is su-

perior to other models.

RQ2 : Does the hyperparameters of SAINT have an impact 

on defect prediction performance?

  The hyperparameters of SAINT do not affect defect 

prediction    performance.

  The hyperparameters of SAINT affect defect pre-

diction performance.

performance compared to alternative techniques, quan-

tifying its superiority in defect prediction. Through rig-

orous experimentation and comparative analysis, this 

study provides insights into SAINT's effectiveness as a de-

fect prediction model, contributing valuable information 

to the field of software reliability.

4.2 Dataset

To evaluate the performance of the model, opensource 

data sets (AEEEM, ReLink,PROMISE and AUDI). Detailed 

information of each data is shown in Table 1

4.3 Data Pre-processing

This study employs SAINT, XGBoost (XGB), Random 

Forest (RF), and CatBoost for software defect prediction. 

To tackle imbalanced data, MIN-MAX scaling and 1:1 ra-

tio learning is applied to all models. Moreover, Synthetic

Dataset Project Instances Buggy(%)
No of 
metrics

Granularity

AEEEM

EQ 324 129(39.81%) 61 Class

JDT 997 206(20.66%) 61 Class

LC 691 64(9.26%) 61 Class

Relink

Apache 194 98(50.52%) 26 Class

Zxing 399 110(29.5%) 26 Class

Safe 56 22(39.22%) 26 Class

Promise
Ant 769 187(24.32%) 20 Class

Xerces 454 43(9.47%) 20 Class

AUDI

Project A 1909 191(4.45%) 13 Class

Project K 2516 374(15%) 13 Class

Project L 2896 76(2.62%) 13 Class

Table 1. Dataset

Minority Over-sampling Technique (SMOTE) is used spe-

cifically for XGB and RF to enhance minority class repre-

sentation, boosting model robustness. Performance evalu-

ation involves rigorous 10-fold cross-validation repeated 

three times for each technique, totaling 30 evaluations. 

Evaluation metrics such as PD, 

PF, balance, and FIR are computed and averaged across 

folds, ensuring a comprehensive and statistically sound 

assessment of predictive capabilities. The study aims to 

compare the performance of SAINT, XGBoost (XGB), 

Random Forest (RF), and CatBoost, different gradient 

boosting algorithms, in software defect prediction. This 

comparative analysis provides insights into the effective-

ness of various machine learning techniques in addressing 

the challenges of software defect prediction tasks.

4.4 Performance Matrix

In this study, evaluation metrics are derived from the 

confusion matrix. PD (Probability of Detection) measures 

the ratio of correctly identified defective instances to the 

total number of actual defective instances, while PF 

(Probability of False Detection) quantifies the ratio of 

non-defective instances misclassified as defective to the 

total number of non-defective instances. To address class 

imbalance, the study employs the Balance Metric,Balance= 

Predicted class

Defective Clean

Actual
class

Defective TP(True Positive) FN(False Negative)

Clean FP(False Positive) TN(True Negative)

Table 2. Confusion Matrix
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Moreover, FIR (FIR(File 

Inspection Reduction 



)was measured to ana-

lyze the effectiveness of reducing code inspection efforts. 





. where FI is the ratio of the number of files 

to be examined to the entire file.

5. Experimental Setups

5.1 RQ1: How does SAINT's defect prediction 

performance compare to other techniques?

In our study, SAINT consistently outperformed XGBoost, 

Random Forest, and CatBoost (Table 3), demonstrating 

higher average Precision (PD) of 0.8375, lower False Posi-

tive Rate (PF) of 0.2067, and superior average balance of 

0.83528. This indicates that SAINT achieves higher accu-

racy in identifying positive instances while minimizing 

false positive predictions, resulting in a better balance be-

tween precision and recall.

Furthermore, SAINT outperformed XGBoost (FIR: 

0.4599), Random Forest (FIR: 0.2676), and CatBoost (FIR: 

0.2468) in terms of False Instance Rate (FIR). The lower 

FIR values for SAINT suggest that it more effectively mini-

mizes false predictions, leading to a higher overall accu-

racy in software defect prediction. These findings under-

score SAINT's consistent effectiveness in software defect 

prediction, showcasing its superiority over other gradient 

boosting algorithms such as XGBoost, Random Forest, and 

CatBoost. The detailed analysis of performance metrics 

emphasizes SAINT's robustness and reliability in address-

ing the challenges of software defect prediction task.

In addition, it showed higher performance in ope source 

project data as shown in Table 4.

Table 5 compares the effect sizes between SAINT and 

the XGBoost, Random Forest (RF), and CatBoost 

techniques. SAINT exhibited a medium-sized difference in 

the PD metric compared to XGBoost. For RF, SAINT dem-

onstrated a large-sized difference in the PD metric. For 

CatBoost, SAINT showed a small-sized difference in the 

PD metric.

This result demonstrates that SAINT's defect prediction 

performance is superior to traditional machine learning 

techniques, thereby proving advancements in defect pre-

diction methodologies.

MODEL

Metric SAINT XGB RF
CAT

BOOST

PD 0.8375 0.7999 0.7000 0.7750

PF 0.2087 0.4297 0.3702 0.3207

BALANCE 0.8352 0.6634 0.6618 0.6492

FIR 0.4806 0.4599 0.2676 0.2468

Table 3. Comparison of a Performance

Dataset Project PD PF BALANCE FIR

AEEEM

EQ 0.8375 0.2087 0.8352 0.4806

JDT 0.8973 0.3062 0.8225 0.4814

LC 0.7907 0.1896 0.8013 0.4238

Relink

Apache 0.7083 0.2869 0.8963 0.4814

Zxing 0.6953 0.2747 0.8638 0.4008

Safe 0.7072 0.3001 0.8153 0.4653

PROMISE
Ant 0.7008 0.1547 0.7894 0.4023

Xerces 0.7845 0.2152 0.7584 0.3907

AUDI

ProjectA 0.7550 0.1976 0.8001 0.3990

ProjectK 0.8013 0.1978 0.7983 0.3874

ProjectL 0.7963 0.2376 0.8132 0.4354

Table 4. Comparison of Performances Datasets

SAINT
Model

PD PF BALANCE FIR

XgBoost 0.6613(M) -0.7434(L) 2.0652(L) 0.3217(S)

RF 2.0841(L) -1.2115(L) 2.2714(L) 1.8023(L)

CatBoost 0.3781(S) -0.9461(L) 2.0987(L) 2.2521(L)

Table 5. Comparison of Effect Size

5.2 RQ2: Does the hyperparameters of SAINT have an 

impact on defect prediction performance?

Table 6 illustrates the range and default value of the 

parameter “n_blocks” for the SAINT model. The parameter 

“n_blocks” in the SAINT model represents the number of 

Transformer blocks utilized. To assess performance varia-

tions based on the difference in the number of Transfor-

mer blocks used for tokenized data, the range and default 

values of the parameter “n_blocks” are specified accord-

ingly

Table 7 presents the optimal parameter values for the 

SAINT model based on the best performance in terms of 

the PD metric across different projects.

By finding the optimal hyperparameter values, we were 

able to identify performance variations across projects  
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Parameter Range Default

n_blocks {1,2,3} 3

Table 6. Range and Default Values of Parameters

Dataset Project

Best Performing 

Parameter

n_blocks

AEEEM

EQ 2

JDT 3

LC 2

Relink
Apache 3

Zxing 1

Promise

Safe 2

Ant 3

Xerces 2

Audi

ProjectA 2

ProjectK 3

ProjectL 2

Table 7. Parameters Performances Across Different Projects

and hyperparameters in SAINT, and recognized the need 

to adjust parameters to fit specific values for the data. 

Through this process, we can derive the optimal values 

that allow SAINT to effectively perform in SDP. This ap-

proach has led to improved defect prediction perform-

ance in SAINT.

6. Threats to Validity

This study's limitations include the potential composi-

tional threat stemming from examining only four per-

formance metrics (PD, PF, BALANCE, and FIR). By focus-

ing solely on these metrics, there is a risk of overlooking 

other important aspects of model performance, which 

could impact the overall interpretation and general-

izability of the findings. Additionally, the study acknowl-

edges threats to validity arising from the limited diversity 

of the dataset used and the narrow scope of comparison 

with only XGBoost and Random Forest models. Future re-

search efforts should aim to address these limitations by 

exploring datasets with greater diversity in terms of soft-

ware projects, domains, and defect types. Moreover, in-

corporating a broader range of baseline methods beyond 

just XGBoost and Random Forest would provide a more 

comprehensive understanding of SAINT's performance 

relative to other state-of-the-art approaches. By address-

ing thes e limitations, future studies can enhance the ro-

bustness and applicability of the findings, ultimately con-

tributing to a more nuanced understanding of SAINT's ef-

fectiveness and its potential impact on software defect 

prediction tasks.

7. Conclusion

In conclusion, our study introduces the Self-Attention 

and Intersample Attention Transformer (SAINT) model for 

Software Defect Prediction (SDP) and provides a compre-

hensive evaluation of its performance. Through metic-

ulous experimentation and comparative analysis, SAINT 

emerges as a robust and promising approach for enhanc-

ing defect prediction accuracy. Our findings reveal that 

SAINT consistently surpasses traditional methods such as 

XGBoost, Random Forest and CatBoost across various 

evaluation metrics. This consistent superiority underscores 

SAINT's efficacy in capturing complex patterns and de-

pendencies within software defect data, thereby improving 

predictive capabilities significantly. Furthermore, SAINT 

offers valuable insights into the Sapplication of deep 

learning techniques in SDP, highlighting its potential to 

advance the field. Its ability to handle high-dimensional 

data and adapt to diverse software development scenarios 

underscores its versatility and practical utility. Overall, our 

research contributes to the growing body of knowledge in 

SDP by demonstrating the effectiveness of advanced ma-

chine learning approaches like SAINT. By paving the way 

for further exploration and refinement, we envision SAINT 

playing a pivotal role in real-world software development 

contexts, facilitating the creation of more reliable and re-

silient software systems.
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